
Chapter V:

Indexing & Searching

Information Retrieval & Data Mining

Universität des Saarlandes, Saarbrücken

Winter Semester 2011/12

Chapter V: Indexing & Searching*

V.1 Indexing & Query processing

 Inverted indexes, B+-trees, merging vs. hashing,

 Map-Reduce & distribution, index caching

V.2 Compression

 Dictionary-based vs. variable-length encoding,

 Gamma encoding, S16, P-for-Delta

V.3 Top-k Query Processing

 Heuristic top-k approaches, Fagin’s family of threshold-algorithms,

 IO-Top-k, Top-k with incremental merging, and others

V.4 Efficient Similarity Search

 High-dimensional similarity search, SpotSigs algorithm,

 Min-Hashing & Locality Sensitive Hashing (LSH)

*mostly following Chapters 4 & 5 from Manning/Raghavan/Schütze

 and Chapter 9 from Baeza-Yates/Ribeiro-Neto with additions from recent research papers

November 29, 2011 V.2 IR&DM, WS'11/12

V.1 Indexing

......

.....

......

.....

crawl
extract
& clean

index search rank present

strategies for
crawl schedule and
priority queue for
crawl frontier

handle
dynamic pages,
detect duplicates,
detect spam

build and analyze
Web graph,
index all tokens
or word stems

Server farms with 10 000‘s (2002) – 100,000’s (2010) computers,
distributed/replicated data in high-performance file system (GFS,HDFS,…),
massive parallelism for query processing (MapReduce, Hadoop,…)

fast top-k queries,
query logging,
auto-completion

scoring function
over many data
and context criteria

GUI, user guidance,
personalization

- Web, intranet, digital libraries, desktop search

- Unstructured/semistructured data

November 29, 2011 V.3 IR&DM, WS'11/12

Content Gathering and Indexing

Documents

Web Surfing:
In Internet

cafes with or

without

Web Suit ...

Surfing

Internet

Cafes

...

Extraction
of relevant
words

Surf

Internet

Cafe

...

Linguistic
methods:
stemming,
lemmas

Surf

Wave

Internet

WWW

eService

Cafe

Bistro
...

Statistically
weighted
features
(terms)

Index

(B+-tree)

Bistro Cafe ...

URLs

Indexing

Thesaurus
(Ontology)

Synonyms,
Sub-/Super-
Concepts

Crawling

Bag-of-Words representations
.....
......
.....

November 29, 2011 V.4 IR&DM, WS'11/12

Ranking by
descending
relevance

Search engine

Query
(set of weighted
features)

||]1,0[Fq

||

1

2
||

1

2

||

1
:),(

F

j

j

F

j

ij

F

j

jij

i

qd

qd

qdsim

Similarity metric:

(e.g., Cosine measure)

Documents are feature vectors

(bags of words)

Vector Space Model for Relevance Ranking

||]1,0[F

idwith

November 29, 2011 V.5 IR&DM, WS'11/12

e.g., using:
k ikijij wwd 2/:

iikk

ij

ij
fwithdocs

docs

dffreq

dffreq
w

#

#
log

),(max

),(
1log:

Using,

e.g.,

tf*idf as

weights

Combined Ranking with Content & Links Structure

Search engine

Ranking by
descending
relevance & authority

Ranking functions:

• Low-dimensional queries (ad-hoc ranking, Web search):

 BM25(F), authority scores, recency, document structure, etc.

• High-dimensional queries (similarity search):

 Cosine, Jaccard, Hamming on bitwise signatures, etc.

 + Dozens of more features employed by various search engines

Query
(set of weighted
features)

||]1,0[Fq

November 29, 2011 V.6 IR&DM, WS'11/12

Digression: Basic Hardware Considerations

November 29, 2011 V.7 IR&DM, WS'11/12

CPU

M C

HD

HD

Typical

Computer

S
ec

o
n

d
ar

y
 S

to
ra

g
e

... ...

Bus system (32–256 bits

 @200–800 MHz)

TransferRate = width (number of bits) x clock rate x data per clock / 8

 (bytes/sec)

T
er

ti
ar

y
 S

to
ra

g
e

typically 1

300 MB/s
(SATA-300)

16 GB/s
(64bit@2GHz)

6,400 MB/s –
12,800 MB/s
(DDR2, dual channel,
800MHz)

3,200 MB/s
(DDR-SDRAM
@200MHz)

Moore’s Law

Gordon Moore (Intel)
anno 1965:

“The density of integrated

circuits (transistors) will

double every 18 months!”

→ Has often been
generalized to clock
rates of CPUs, disk &
memory sizes, etc.

 → Still holds today for

 integrated circuits!

November 29, 2011 V.8 IR&DM, WS'11/12

Source: http://en.wikipedia.org/wiki/Moore%27s_law

More Modern View on Hardware

• CPU-cache
becomes primary
storage!

• Main-memory
becomes secondary
storage!

November 29, 2011 V.9 IR&DM, WS'11/12

CPU

M C

HD

HD

Multi-core-

multi-CPU

Computer

S
ec

o
n

d
ar

y
 S

to
ra

g
e

... ...

CPU CPU CPU

L1/L2

CPU CPU CPU CPU

L1/L2

...

CPU-to-L1-Cache:
 3-5 cycles initial latency,
 then “burst” mode

CPU-to-Main-Memory:
 ~200 cycles latency

CPU-to-L2-Cache:
 15-20 cycles latency

Data Centers

Google Data Center anno 2004

Source: J. Dean: WSDM 2009 Keynote

November 29, 2011 V.10 IR&DM, WS'11/12

Different Query Types
Conjunctive queries:

all words in q = q1 … qk required

Disjunctive (“andish”) queries:

subset of q words qualifies,

more of q yields higher score

Mixed-mode queries and negations:

q = q1 q2 q3 +q4 +q5 –q6

Phrase queries and proximity queries:

q = “q1 q2 q3” q4 q5 …

Vague-match (approximate) queries

with tolerance to spelling variants

Find relevant docs

by list processing

on inverted indexes

see Chapter III.5

Including variant:
• scan & merge
 only subset of qi lists
• lookup long
 or negated qi lists
 only for best result
 candidates

Structured queries and XML-IR
//article[about(.//title, “Harry Potter”)]//sec

November 29, 2011 V.11 IR&DM, WS'11/12

Indexing with Inverted Lists

index lists
with postings
(docId, score)
sorted by docId

Google:
> 10 Mio. terms
> 20 Bio. docs
> 10 TB index

professor

B+ tree on terms

17: 0.3
44: 0.4

..
.

research ... xml ...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

..
.

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

..
.

17: 0.3
17: 0.1 44: 0.4

44: 0.2

11: 0.6

q: {professor
 research
 xml}

Vector space model suggests term-document matrix,
but data is sparse and queries are even very sparse.

 Better use inverted index lists with terms as keys for B+ tree.

terms can be full words, word stems, word pairs, substrings, N-grams, etc.
(whatever “dictionary terms” we prefer for the application)

• Index-list entries in docId order for fast Boolean operations

• Many techniques for excellent compression of index lists

• Additional position index needed for phrases, proximity, etc.
 (or other pre-computed data structures)

November 29, 2011 V.12 IR&DM, WS'11/12

B+-Tree Index for Term Dictionary

• B-tree: balanced tree with internal nodes of ≤m fan-out

• B+-tree: leaf nodes additionally linked via pointers for efficient range scans

• For term dictionary: Leaf entries point to inverted list entries on local disk

and/or node in compute cluster

November 29, 2011 V.13 IR&DM, WS'11/12

[A
-I

]

[J
-Z

]

[J
-K

]

[L
-Q

]

[R
-Z

]

[A
-D

]

[E
-F

]

[G
-I

]

[A
-B

]

[C
]

[D
]

[E
]

[F
]

[G
]

[H
]

[I
]

…

…

…

m = 3 Keywords [A-Z]

Inverted Index for Posting Lists

November 29, 2011 IR&DM, WS'11/12 V.14

Index-list entries usually stored

in ascending order of docId

(for efficient merge joins)

or

in descending order of

per-term score

(impact-ordered lists

 for top-k style pruning).

Usually compressed and divided

into block sizes which are

convenient for disk operations.

Index lists

s(t1,d1) = 0.9
…
s(tm,d1) = 0.2

…

Documents: d1, …, dn

…

…

t1
d10
0.9

d67
0.7

d88
0.2

d23
0.2

d78
0.1

d88
0.2

d99
0.1

d23
0.8

d54
0.8

t2
d10
0.8

d12
0.6

d17
0.6

t3
d10
0.7

d12
0.5

d23
0.4

d10

so
rt

Query Processing on Inverted Lists

Join-then-sort algorithm:

Given: query q = t1 t2 ... tz with z (conjunctive) keywords
 similarity scoring function score(q,d) for docs d D, e.g.:
 with precomputed scores (index weights) si(d) for which qi≠0

Find: top-k results for score(q,d) =aggr{si(d)} (e.g.: i q si(d))

q d

top-k (
 [term=t1] (index) DocId

 [term=t2] (index) DocId

 ... DocId
 [term=tz] (index) order by s desc)

index lists
with postings
(docId, score)
sorted by docId

professor

B+ tree on terms

17: 0.3
44: 0.4

..
.

research ... xml ...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

..
.

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

..
.

17: 0.3
17: 0.1 44: 0.4

44: 0.2

11: 0.6

q: {professor
 research
 xml}

November 29, 2011 V.15 IR&DM, WS'11/12

Index List Processing by Merge Join
Keep L(i) in ascending order of doc ids.

Delta encoding: compress Li by actually storing the gaps between

successive doc ids (or using some more sophisticated prefix-free code).

QP may start with those Li lists that are short and have high idf.

→ Candidates need to be looked up in other lists Lj.

November 29, 2011 V.16 IR&DM, WS'11/12

Li

Lj

2 4 9 16 59 66 128 135 291 311 315 591 672 899

1 2 3 5 8 17 21 35 39 46 52 66 75 88

…

…

skip!

To avoid having to uncompress the entire list Lj, Lj is encoded into groups

(i.e., blocks) of compressed entries with a skip pointer at the start of each

block sqrt(n) evenly spaced skip pointers for list of length n.

Index List Processing by Hash Join
Keep Li in ascending order of scores (e.g., TF*IDF).

Delta Encoding: compress Li by storing the gaps between

 successive scores (often combined with variable-length encoding).

QP may start with those Li lists that are short and have high scores,

 schedule may vary adaptively to scores.

→ Candidates can immediately be looked up in other lists Lj.

→ Can aggregate candidate scores on-the-fly.

Li

Lj

66 2 672 4 899 128 135 1 591 16 315 59 291 311

75 1 17 2 52 66 88 3 672 5 8 21 35 39

…

…

November 29, 2011 V.17 IR&DM, WS'11/12

?

Index Construction and Updates

Index construction:

• extract (docId, termId, score) triples from docs

• can be partitioned & parallelized

• scores need idf (estimates)

• sort entries termId (primary) and docId (secondary)

• disk-based merge sort (build runs, write to temp, merge runs)

• can be partitioned & parallelized

• load index from sorted file(s), using large batches for disk I/O,

• compress sorted entries (delta-encoding, etc.)

• create dictionary entries for fast access during query processing

Index updating:

• collect large batches of updates in separate file(s)

• periodically sort these files and merge them with index lists

November 29, 2011 V.18 IR&DM, WS'11/12

Map-Reduce Parallelism for Index Building

Extractor

a

b c

a
u

f

d

f
z

y t

Extractor

Map

a..c

u..z

...

a..c

u..z
...

...

a..c

u..z

...
a..c

u..z

...

sort

sort

sort

sort

Inverter

Inverter

Reduce input
files

output
files Intermediate files

November 29, 2011 V.19 IR&DM, WS'11/12

a b … z

Map-Reduce Parallelism

November 29, 2011 IR&DM, WS'11/12 V.20

Programming paradigm and infrastructure

for scalable, highly parallel data analytics.

• can run on 1000’s of computers

• with built-in load balancing & fault-tolerance

 (automatic scheduling & restart of worker processes)

Easy programming with key-value pairs:

Map function: K V (L W)*

 (k1, v1) | (l1,w1), (l2,w2), …

Reduce function: L W* W*

 l1, (x1, x2, …) | y1, y2, …

Examples:

• Index building: K=docIds, V=contents, L=termIds, W=docIds

• Click log analysis: K=logs, V=clicks, L=URLs, W=counts

• Web graph reversal: K=docIds, V=(s,t) outlinks, L=t, W=(t,s) inlinks

Map-Reduce Example

for Inverted Index Construction

class Mapper

 procedure MAP(docId n, doc d)

 H ← new Map<term, int>

 For term t doc d do // local tf aggregation

 H(t) ← H(t) + 1

 For term t H d do // emit reducer job, e.g., using hash of term t

 EMIT(term t, new posting <docId n, H(t)>)

November 29, 2011 IR&DM, WS'11/12 V.21

class Reducer

 procedure REDUCE(term t, postings [<n1,f1>, <n2,f2>, …])

 P ← new List<posting>

 For posting <n, f> postings [<n1,f1>, <n2,f2>, …] do // global idf aggregation

 P.APPEND(<n,f>)

 SORT(P) // sort all postings hashed to this reducer by <term, docId || score>

 EMIT(term t, postings P) // emit sorted inverted lists for each term

Source: Lin & Dyer (Maryland U): Data Intensive Text Processing with MapReduce

Challenge: Petabyte-Sort

Jim Gray benchmark:

• Sort large amounts of 100-byte records (10 first bytes are keys)

• Minute-Sort: sort as many records as possible in under a minute

• Gray-Sort: must sort at least 100 TB, must run at least 1 hour

May 2011: Yahoo sorts 1 TB in 62 seconds and 1 PB in 16:15 hours

on Hadoop

(http://developer.yahoo.com/blogs/hadoop/posts/2009/05/hadoop_sorts_a_petabyte_in_162/)

Nov. 2008: Google sorts 1 TB in 68 seconds and 1 PB in 6:02 hours

on MapReduce (using 4,000 computers with 48,000 hard drives)

 (http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html)

November 29, 2011 IR&DM, WS'11/12 V.22

http://developer.yahoo.com/blogs/hadoop/posts/2009/05/hadoop_sorts_a_petabyte_in_162/
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html

Index Caching

November 29, 2011 IR&DM, WS'11/12 V.23

Index Server

…

queries

Index-List
Caches

queries

Index Server

Query Processor Query Processor

Query-Result
Caches

a b: a c d: e f: g h:

Caching Strategies

November 29, 2011 IR&DM, WS'11/12 V.24

What is cached?

• index lists for individual terms

• entire query results

• postings for multi-term intersections

Where is an item cached?

• in RAM of responsible server-farm node

• in front-end accelerators or proxy servers

• as replicas in RAM of all (many) server-farm

When are cached items dropped?

• estimate for each item: temperature = access-rate / size

• when space is needed, drop item with lowest temperature
 Landlord algorithm [Cao/Irani 1997, Young 1998], generalizes LRU-k [O‘Neil 1993]

• prefetch item if its predicted temperature is higher than

 the temperature of the corresponding replacement victims

…
Index-list entries are
hashed onto nodes by docId.

Each complete query
is run on each node;
results are merged.

 Perfect load balance,
 embarrasingly scalable,
 easy maintenance.

Distributed Indexing: Doc Partitioning

November 29, 2011 IR&DM, WS'11/12 V.25

Data, Workload & Cost Parameters

• 20 Bio. Web pages, 100 terms each 2 x 1012 index entries

• 10 Mio. distinct terms 2 x 105 entries per index list

• 5 Bytes (amortized) per entry 1 MB per index list, 10 TB total

• Query throughput: typical 1,000 q/s; peak: 10,000 q/s

• Response time: all queries in 100 ms

• Reliability & availability: 10-fold redundancy

• Execution cost per query:

– 1 ms initial latency + 1 ms per 1,000 index entries

– 2 terms per query

• Cost per PC (4 GB RAM): $ 1,000

• Cost per disk (1 TB): $ 500 with 5 ms per RA, 20 MB/s for SA’s

November 29, 2011 IR&DM, WS'11/12 V.26

Back-of-the-Envelope Cost Model

for Document-Partitioned Index (in RAM)

• 3,000 computers for

 one copy of index = 1 cluster

– 3,000 x 4 GB RAM = 12 TB

 (10 TB total index size + workspace RAM)

• Query Processing:

– Each query executed by all 3,000 computers in parallel:
1 ms + (2 x 200 ms / 3000) 1 ms

  each cluster can sustain ~1,000 queries / s

• 10 clusters = 30,000 computers

 to sustain peak load and guarantee reliability/availability

  $ 30 Mio = 30,000 x $1,000 (no “big” disks)
November 29, 2011 IR&DM, WS'11/12 V.27

Distributed Indexing: Term Partitioning

November 29, 2011 IR&DM, WS'11/12 V.28

…
Entire index lists are
hashed onto nodes by termId.

Queries are routed
to nodes with
relevant terms.

 Lower resource consumption,
 susceptible to imbalance
 (because of data or load skew),
 index maintenance non-trivial.

Back-of-the-Envelope Cost Model

for Term-Partitioned Index (on Disk)

• 10 nodes, each with 1 TB disk, hold entire index

• Execution time:

 max (1 MB / 20 MB/s, 1 ms + 200 ms)
– but limited throughput:

– 5 q/s per node for 1-term queries

• Need 200 nodes = 1 cluster

 to sustain 1,000 q/s with 1-term queries

 or 500 q/s with 2-term queries

• Need 20 clusters for peak load and reliability/availability
4,000 computers  $ 6 Mio = 4,000 x ($1,000 + $500)

November 29, 2011 IR&DM, WS'11/12 V.29

saves money & energy

but faces challenge of update costs & load balance

