Chapter V-
Indexing & Searching

Information Retrieval & Data Mining
Universitat des Saarlandes, Saarbriicken
Winter Semester 2011/12

Chapter V: Indexing & Searching*

V.1 Indexing & Query processing
Inverted indexes, B*-trees, merging vs. hashing,
Map-Reduce & distribution, index caching

V.2 Compression

Dictionary-based vs. variable-length encoding,
Gamma encoding, S16, P-for-Delta

V.3 Top-k Query Processing
Heuristic top-k approaches, Fagin’s family of threshold-algorithms,
|O-Top-k, Top-k with incremental merging, and others

V.4 Efficient Similarity Search
High-dimensional similarity search, SpotSigs algorithm,
Min-Hashing & Locality Sensitive Hashing (LSH)

*mostly following Chapters 4 & 5 from Manning/Raghavan/Schiitze
and Chapter 9 from Baeza-Yates/Ribeiro-Neto with additions from recent research papers

IR&DM, WS'11/12 November 29, 2011

V.2

V.1 Indexing

- WeD, intranet, digital libraries, desktop search
- Unstructured/semistructured data

extract index search | | rank resent
q crawl H & clean | i

handle ‘ :
dynamic pages, fast top-k queries, GUI, user guidance,
detect duplicates, query logging, personalization
detect spam auto-completion

strategies for build and analyze scoring function

crawl schedule and ~ Web graph, over many data

priority queue for Index all tokens and context criteria

craw| frontier or word stems

N -

—
Server farms with 10 000¢s (2002) — 100,000’s (2010) computers,
distributed/replicated data in high-performance file system (GFS,HDFS,...),
massive parallelism for query processing (MapReduce, Hadoop,...)

IR&DM, WS'11/12 November 29, 2011 V.3

Content Gathering and Indexing

Bag-of-Words representations

. 1 Surfing Surf Surf
— Crawling Internet Internet Wave

— :> Cafes :> Cafe :> Internet
Web Surfing: / WwWw
In Internet eService
cafes with or _ _ o o Cafe
without Extraction Linguistic Statistically 5.
Web Suit ... of relevant methods: weighted
words stemming, features —Indexing
lemmas (terms) @

Documents Thesaurus Ind
Ontology (B?_tf:e)

Synonyms, _
Sub-/Super- Blstrol l l Cafel l l l

URLSs

IR&DM, WS'11/12 November 29, 2011 V.4

Vector Space Model for Relevance Ranking

Ranking by Similarity metric:
descending (e.g., Cosine measure)
relevance IF|

Zdu' d;

sim(d.,q):=

FLFEL
\/Z dij 2.4
=1 =t

with d. [0,1]©

Queryge[0,1] IF|
(set of weighted 3
features)

Documents are feature vectors
(bags of words)
Using,

w. =log| 1+ freq(f;,d;) - #docs tfidf as
. max, freq(f,,d;) #docswith f, welghts

November 29, 2011 V.5

IR&DM, WS'11/12

Combined Ranking with Content & Links Structure

Ranking by
descending
relevance & authority

Queryqe[01] IF|
(set of weighted
features)

Ranking functions:
« Low-dimensional queries (ad-hoc ranking, Web search):
BM25(F), authority scores, recency, document structure, etc.
« High-dimensional queries (similarity search):
Cosine, Jaccard, Hamming on bitwise signatures, etc.

+ Dozens of more features employed by various search engines

IR&DM, WS'11/12 November 29, 2011

Digression: Basic Hardware Considerations

CPU

16 GB/s
(64bit@2GHz)
Bus system (32—-256 bits

Typical

@200-800 MHz Computer
" _I_I_ aaw

(DDR2, dual channel,
800MHz)

300 MB/s
A M C (SATA-300)
3,200 MB/s
(DDR-SDRAM -
@200MH?z) 4@
6,400 MB/s —
12,800 MB/s

Secondary Storage

Tertiary Storage

TransferRate = width (number of bits) x clock rate x data per clock / 8
N J

(bytes/sec)

IR&DM, WS'11/12

November 29, 2011

>
typically 1

V.7

Moore’s LLaw

Gordon Moore (Intel)

anno 1965:

“The density of integrated
circuits (transistors) will
double every 18 months

'79

— Has often been
generalized to clock
rates of CPUs, disk &
memory sizes, etc.

— Still holds today for
Integrated circuits!

IR&DM, WS'11/12

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000

100,000,000 —

10,000,000

1,000,000

100,000

10,000

2,300 4004

16-Core SPARC T3

AAAAA

' ® Pentium 1l
Pentium Il

curve shows transistor
count doubling every
two years

SSSSS

EEEEEE

8088

T I T 1
1980 1990 2000 2011

Date of introduction

Source: http://en.wikipedia.org/wiki/Moore%27s_law

November 29, 2011

V.8

More Modern View on Hardware

[

CPU

L1/L2

[__

CPU

L1/L2

M

« CPU-cache
becomes primary
storage!

« Main-memory

becomes secondary

storage!

IR&DM, WS'11/12

>
p)]
>
<
=
8
i

November 29, 2011

Multi-core-
multi-CPU
Computer

CPU-to-L1-Cache:

3-5 cycles initial latency,
then “burst” mode

CPU-to-L2-Cache:
15-20 cycles latency

CPU-to-Main-Memory:
~200 cycles latency

V.9

Google Data Center anno 2004
Source: J. Dean: WSDM 2009 Keynote

IR&DM, WS'11/12 November 29, 2011 V.10

Different Query Types

Conjunctive queries: ™
all words ing =g, ... g, required

Find relevant docs
by list processing
on inverted indexes

Disjunctive (“andish’) queries:
subset of g words qualifies,
more of q yields higher score

Mixed-mode queries and negations:

> Including variant:

e Scan & merge

only subset of q; lists
» lookup long

q=0:;0,0; t0s *0s5 Qg J
Phrase queries and proximity queries: ™
q="91 0,03 q40s ---

Vague-match (approximate) queries
with tolerance to spelling variants

Structured queries and XML-IR

or negated q; lists
only for best result
candidates

> see Chapter I11.5

/larticle[about(.//title, “Harry Potter”)]//sec

IR&DM, WS'11/12 November 29, 2011

V.11

Indexing with Inverted Lists

Vector space model suggests term-document matrix,

but data Is sparse and queries are even very sparse.

— Better use inverted index lists with terms as keys for B+ tree.
g: {professor

research B+ tree on terms

xml} professor ... research o xml
: . 17:0.3 12: 0.5 11: 0.6
index lists 44: 0.4 14: 0.4 17:0.1| Google:
with postings 52:0.1 28:0.1 28:0.7| § 10 Mio. terms
(docld, score) 53: 0.8 44: 0.2 : Y-
sorted by docld 55: 0.6 515 0.6 > 20 BIO._ docs

: e > 10 TB index

terms can be full words, word stems, word pairs, substrings, N-grams, etc.
(whatever “dictionary terms” we prefer for the application)

* Index-list entries in docld order for fast Boolean operations
« Many techniques for excellent compression of index lists

 Additional position index needed for phrases, proximity, etc.
(or other pre-computed data structures)

IR&DM, WS'11/12 November 29, 2011 V.12

B+-Tree Index for Term Dictionary

Keywords [A-Z]|= m=23

Hﬁﬁ//ﬁ i\mﬁ
- PRIl NN
TIT TT T TIT IT] TT]

e B-tree: balanced tree with internal nodes of <m fan-out
B*-tree: leaf nodes additionally linked via pointers for efficient range scans

« For term dictionary: Leaf entries point to inverted list entries on local disk
and/or node in compute cluster

IR&DM, WS'11/12 November 29, 2011 V.13

Inverted Index for Posting Lists

Documents: ds, ..., dy Index-list entries usually stored
5 In ascending order of docld
dig (for efficient merge joins)
S(tl,dl) =0.9
.S.(;[m,dl) =02 || I” ﬂ
T — In descending order of
3 per-term score

— Indexlists = —>

— ———| (impact-ordered lists
ty d10 |d23 | d54|d67 d88 M

09 los l08]0o7 02 .. || for top-k style pruning).

It d10 [d12 [d17[d23 d78 iy
21 08 |06 |06/02 01 -

) d10 |diz | d23|dss deo f | Usually compressed and divided

- into block sizes which are

\ / . . .
convenient for disk operations.

IR&DM, WS'11/12 November 29, 2011 V.14

Query Processing on Inverted Lists

g: {professor

research B+ tree on terms

xml} professor ... research o xmil
] i 17: 0.3 12: 0.5 11: 0.6
index lists 44: 0.4 14: 0.4 17:0.1
with postings 52:0.1 28: 0.1 28: 0.7
(docld, score) 53: 0.8 44: 0.2 :
sorted by docld [95: 0.6 g% 8-3

Given: query q =t; t, ... t, with z (conjunctive) keywords _
similarity scoring function score(q,d) for docs deD, e.g.:G - d
with precomputed scores (index weights) s;(d) for which g0

Find: top-k results for score(q,d) =aggr{s;(d)} (e.9.: Z;, Si(d))

Join-then-sort algorithm:
top-k (
olterm=t,] (index) |X | pecig
olterm=t,] (index) |X | pocig

_ X | Docld
c[term=t,] (index) order by s desc)

ovember 29, 2011 V.15

IR&DM, WS'11/12

Index List Processing by Merge Join

Keep L(i) in ascending order of doc ids.
Delta encoding: compress L; by actually storing the gaps between
successive doc ids (or using some more sophisticated prefix-free code).

QP may start with those L, lists that are short and have high idf.
— Candidates need to be looked up in other lists L.

To avoid having to uncompress the entire list L;, L; Is encoded into groups
(i.e., blocks) of compressed entries with a skip pointer at the start of each
block — sgrt(n) evenly spaced skip pointers for list of length n.

Li || 2|l 4 || o[|26/|50 | |66 |128] 135201 | 311 |315|501/672|ss...
kip!
— i >KIp T
LJ 1‘2 35 8‘ 17‘21 35139 | 46 52166 75|88 ...

IR&DM, WS'11/12 November 29, 2011

V.16

Index List Processing by Hash Join

Keep L; in ascending order of scores (e.g., TF*IDF).
Delta Encoding: compress L; by storing the gaps between

successive scores (often combined with variable-length encoding).

QP may start with those L; lists that are short and have high scores,

schedule may vary adaptively to scores.

— Candidates can immediately be looked up in other lists L;.
— Can aggregate candidate scores on-the-fly.

128 |13 591 16 | |315| 59

291

3114, ..

~
88 3672|| 5 8| 21

35

39 ...

IR&DM, WS'11/12

November 29, 2011

V.17

Index Construction and Updates

Index construction:
« extract (docld, termld, score) triples from docs
« can be partitioned & parallelized
» scores need idf (estimates)
« sort entries termld (primary) and docld (secondary)
» disk-based merge sort (build runs, write to temp, merge runs)
« can be partitioned & parallelized
* load index from sorted file(s), using large batches for disk 1/O,
« compress sorted entries (delta-encoding, etc.)
» create dictionary entries for fast access during query processing

Index updating:
» collect large batches of updates in separate file(s)
« periodically sort these files and merge them with index lists

IR&DM, WS'11/12 November 29, 2011 V.18

Map-Reduce Parallelism for Index Building

g
- Extractor <

Input
files Map

IR&DM, WS'11/12

Extractor <

a..c a..C
sort @0
> S
\6‘00
. y 4
Inverter
u..z u..z
sort gz)
S
g
2
a..c a..c <,
sort NG
5 Inverter
u..z u..z o
sort / S0
] S
Reduce

Intermediate files

November 29, 2011

output
files

V.19

Map-Reduce Parallelism

Programming paradigm and infrastructure

for scalable, highly parallel data analytics.

e can run on 1000’s of computers

« with built-in load balancing & fault-tolerance
(automatic scheduling & restart of worker processes)

Easy programming with key-value pairs:
Map function: KxV — (L xW)*

(k1, v1) — dA1,wl), (12,w2), ...
Reduce function: L xW* — W*

11, (x1,x2,...) |—> vyl,y2,...

Examples:

* Index building: K=doclds, V=contents, L=termlds, W=doclds

* Click log analysis: K=logs, VV=clicks, L=URLs, W=counts

* Web graph reversal: K=doclds, V=(s,t) outlinks, L=t, W=(t,s) inlinks

IR&DM, WS'11/12 November 29, 2011 V.20

Map-Reduce Example
for Inverted Index Construction

class Mapper
procedure MAP(docld n, doc d)
H <« new Map<term, Iint>
For termt € doc d do // local tf aggregation
H(t) — H(t) + 1
Fortermt € H d do // emit reducer job, e.g., using hash of term t
EMIT (term t, new posting <docld n, H(t)>)

class Reducer
procedure REDUCE(term t, postings [<n,,f,>, <n,,f>, ...])
P <« new List<posting>
For posting <n, f> e postings [<n,,f,>, <n,,f,>, ...] do // global idf aggregation
P.APPEND(<n,f>)
SORT(P) // sort all postings hashed to this reducer by <term, docld || score>
EMIT (term t, postings P) // emit sorted inverted lists for each term

Source: Lin & Dyer (Maryland U): Data Intensive Text Processing with MapReduce

IR&DM, WS'11/12 November 29, 2011 V.21

Challenge: Petabyte-Sort

Jim Gray benchmark:

 Sort large amounts of 100-byte records (10 first bytes are keys)
« Minute-Sort: sort as many records as possible in under a minute
« Gray-Sort: must sort at least 100 TB, must run at least 1 hour

May 2011: Yahoo sorts 1 TB in 62 seconds and 1 PB in 16:15 hours
on Hadoop

(http://developer.vahoo.com/bIoqs/hadoop/posts/2009/05/hadoop sorts_a_petabyte_in_162/)

Nov. 2008: Google sorts 1 TB in 68 seconds and 1 PB in 6:02 hours
on MapReduce (using 4,000 computers with 48,000 hard drives)
(http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html)

IR&DM, WS'11/12 November 29, 2011 V.22

http://developer.yahoo.com/blogs/hadoop/posts/2009/05/hadoop_sorts_a_petabyte_in_162/
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html

Index Caching

queries

Wl

ab: acd:

Jud o

!

Query Processor

Index Server

IR&DM, WS'11/12

Query-Result
Caches

Index-List
Caches

November 29, 2011

queries

UL

ef. gh:
LD DDI

Query Processor

|

Index Server

V.23

Caching Strategies

What Is cached?
* index lists for individual terms
* entire query results
 postings for multi-term intersections

Where is an item cached?
 In RAM of responsible server-farm node
* in front-end accelerators or proxy servers
« as replicas in RAM of all (many) server-farm

When are cached items dropped?
» estimate for each item: temperature = access-rate / size

 When space Is needed, drop item with lowest temperature
Landlord algorithm [Cao/Irani 1997, Young 1998], generalizes LRU-k [O‘Neil 1993]

» prefetch item if its predicted temperature Is higher than
the temperature of the corresponding replacement victims

IR&DM, WS'11/12 November 29, 2011 V.24

Distributed Indexing: Doc Partitioninw‘ 1'

Index-list entries are
hashed onto nodes by docld.

Each complete query
IS run on each node;
results are merged.

— Perfect load balance,
embarrasingly scalable,
easy maintenance.

IR&DM, WS'11/12 November 29, 2011 V.25

Data, Workload & Cost Parameters

« 20 Bio. Web pages, 100 terms each — 2 x 10%*? index entries
« 10 Mio. distinct terms — 2 x 10° entries per index list
« 5 Bytes (amortized) per entry — 1 MB per index list, 10 TB total

* Query throughput: typical 1,000 g/s; peak: 10,000 g/s
* Response time: all queries in <100 ms
« Reliability & availability: 10-fold redundancy

 EXxecution cost per query:
— 1 ms initial latency + 1 ms per 1,000 index entries
— 2 terms per query

Cost per PC (4 GB RAM): $ 1,000
* Cost per disk (1 TB): $ 500 with 5 ms per RA, 20 MB/s for SA’s

IR&DM, WS'11/12 November 29, 2011 V.26

Back-of-the-Envelope Cost Model
for Document-Partitioned Index (in RAM)

« 3,000 computers for

one copy of index = 1 cluster
— 3,000x4GBRAM=12TB
(10 TB total index size + workspace RAM)

* Query Processing:

— Each query executed by all 3,000 computers in parallel:
1 ms + (2 x 200 ms/3000)~1ms

—> each cluster can sustain ~1,000 queries /s

10 clusters = 30,000 computers
to sustain peak load and guarantee reliability/availability
- $ 30 Mio = 30,000 x $1,000 (no “big” disks)

IR&DM, WS'11/12 November 29, 2011 V.27

/\ Entire index listsare
. hashed onto nodes by termld.

Queries are routed
to nodes with

relevant terms.
~ - - — Lower resource consumption,
= susceptible to imbalance

(because of data or load skew),
Index maintenance non-trivial.

IR&DM, WS'11/12 November 29, 2011 V.28

Back-of-the-Envelope Cost Model
for Term-Partitioned Index (on Disk)

e 10 nodes, each with 1 TB disk, hold entire index

 Execution time:

max (1 MB /20 MB/s, 1 ms + 200 ms)
— but limited throughput:
— 5 g/s per node for 1-term queries

* Need 200 nodes = 1 cluster
to sustain 1,000 g/s with 1-term queries
or 500 g/s with 2-term queries

* Need 20 clusters for peak load and reliability/availability
4,000 computers = $ 6 Mio = 4,000 x ($1,000 + $500)

saves money & energy
but faces challenge of update costs & load balance

IR&DM, WS'11/12 November 29, 2011 V.29

