
V.2 Index Compression

Heap’s law (empirically observed and postulated):

Size of the vocabulary (distinct terms) in a corpus

 n]corpusintermsdistinct[E 

with total number of term occurrences n, and constants ,  ( < 1),

classically 20, 0.5 (→ ~ 3 Mio terms for 20 Bio docs)

Zipf’s law (empirically observed and postulated):

Relative frequencies of terms in the corpus












k
xfreqrelhastermpopularmostkP th 1
]..[

with parameter , classically set to 1

 Both laws strongly suggest opportunities for compression!

December 1, 2011 V.1 IR&DM, WS'11/12

Recap: Huffman Coding
Variable-length unary code based on frequency analysis of the underlying

distribution of symbols (e.g., words or tokens) in a text.

Key idea: choose shortest unary sequence for most frequent symbol.

December 1, 2011 IR&DM, WS'11/12 V.2

Let f(x) be the probability (or relative frequency) of the x-th symbol
in some text d. The entropy of the text
(or the underlying prob. distribution f) is:

H(d) is a lower bound for the average (i.e., expected) amount of bits per
symbol needed with optimal compression. Huffman comes close to H(d).


x xf

xfdH
)(

1
log)()(2

Symbol x Frequency f(x) Huffman
Encoding

a 0.8 0

peter 0.1 10

picked 0.07 110

peck 0.03 111 a peter picked peck

0 1

10 11

110 111

Huffman tree

Overview of Compression Techniques

• Dictionary-based encoding schemes:

– Ziv-Lempel: LZ77

 (entire family of Zip encodings: GZip, BZIP2, etc.)

• Variable-length encoding schemes:

– Variable-Byte encoding (byte-aligned)

– Gamma, Golomb/Rice (bit-aligned)

– S16 (byte-aligned, actually creates entire 32- or 64-bit words)

– P-FOR-Delta

 (bit-aligned, with extra space for “exceptions”)

– Interpolative Coding (IPC)

 (bit-aligned, can actually plug in various schemes for binary code)

December 1, 2011 V.3 IR&DM, WS'11/12

Ziv-Lempel Compression

December 1, 2011 IR&DM, WS'11/12 V.4

LZ77 (Adaptive Dictionary) and further variants:

• Scan text & identify in a lookahead window the longest string

 that occurs repeatedly and is contained in a backward window.

• Replace this string by a “pointer” to its previous occurrence.

Encode text into list of triples <back, count, new> where

• back is the backward distance to a prior occurrence of the string

 that starts at the current position,

• count is the length of this repeated string, and

• new is the next symbol that follows the repeated string.

Triples themselves can be further encoded (with variable length).

Better variants use explicit dictionary with statistical analysis

(need to scan text twice).

Example: Ziv-Lempel Compression

December 1, 2011 IR&DM, WS'11/12 V.5

great for text, but not appropriate for index lists

<0, 0, p> for character 1: p
<0, 0, e> for character 2: e
<0, 0, t> for character 3: t
<-2, 1, r> for characters 4-5: er
<0, 0, _> for character 6: _
<-6, 1, i> for characters 7-8: pi
<-8, 2, r> for characters 9-11: per
<-6, 3, c> for charaters 12-13: _pic
<0, 0, k> for character 16 k
<-7,1,d> for characters 17-18 ed
...

peter_piper_picked_a_peck_of_pickled_peppers

Variable-Byte Encoding

• Encode sequence of numbers into variable-length bytes

using one status bit per byte indicating whether the

current number expands into next byte.

Example:

 To encode the decimal number 12038, write:

December 1, 2011 IR&DM, WS'11/12 V.6

1011110 1

1st 8-bit word = 1 byte

1 status bit 7 data bits
per byte

0000110 0
Thus needs 2 bytes

instead of 4 bytes

(regular 32-bit integer)!

2nd 8-bit word = 1 byte

Gamma Encoding

December 1, 2011 IR&DM, WS'11/12 V.7

Delta-encode gaps in inverted lists (successive doc ids):

Unary coding:

gap of size x encoded by:

log2(x) times 0 followed by one 1

(log2(x) + 1 bits)

Binary coding:

gap of size x encoded by

binary representation of number x

(log2 x bits)

good for short gaps good for long gaps

Gamma (γ) coding:

length:= floor(log2 x) in unary, followed by

offset := x  2^(floor(log2 x)) in binary

Results in (1 + log2 x + log2 x) bits per input number x

 generalization: Golomb/Rice code (optimal for geometr. distr. x)

 still need to pack variable-length codes into bytes or words

Example: Gamma Encoding

Particularly useful when:

• Distribution of numbers (incl. largest number)

is not known ahead of time

• Small values (e.g., delta-encoded docIds or low

TF*IDF scores) are frequent

December 1, 2011 IR&DM, WS'11/12 V.8

Number x Gamma Encoding

1 = 20 1

5 = 22 + 20 00101

15 = 23+22 +21+20 0001111

16 = 24 000010000

Golomb/Rice Encoding
For a tunable parameter M, split input number x into:

• Quotient part q := floor(x/M) stored in unary code (using q x 1 + 1 x 0)

• Remainder part r:= (x mod M) stored in binary code

– If M is chosen as a power of 2,

 then r needs log2(M) bits (→ Rice encoding)

– else set b := ceil(log2(M))

• If r < 2b−M, then r as plain binary number using b-1 bits

• else code the number r + 2b − M in plain binary representation

using b bits

December 1, 2011 IR&DM, WS'11/12 V.9

Number x q Output bits q

0 0 0

33 3 1110

57 5 111110

99 9 1111111110

r Binary (b bits) Output bits r

0 0000 000

3 0011 011

7 1101 1101

9 1111 1111

E
x
am

p
le

:

M=10

b=4

S9/S16 Compression
[Zhang, Long, Suel: WWW’08]

• Byte aligned encoding (32-bit integer words of fixed length)

• 4 status bits encode 9 or 16 cases for partitioning the 28 data bits

– Example: If the above case 1001 denotes 4 x 7 bit for the data part,

then the data part encodes the decimal numbers: 94, 8, 54, 47

• Decompression implemented by case table or by hardcoding all cases

• High cache locality of decompression code/table

• Fast CPU support for bit shifting integers on 32-bit to 128-bit platforms

December 1, 2011 IR&DM, WS'11/12 V.10

1011110000100001101100101111 1001

32-bit word (integer) = 4 bytes

4 status bits 28 data bits

P-FOR-Delta Compression
 [Zukowski, Heman, Nes, Boncz: ICDE’06]

 For “Patched Frame-of-Reference” w/Delta-encoded Gaps

• Key idea: encode individual

 numbers such that “most”

 numbers fit into b bits.

• Focuses on encoding an entire

 block at a time by choosing a

 value of b bits such that

 [highcoded, lowcoded] is small.

• Outliers (“exceptions”) stored

 in extra exception section at the

 end of the block in reverse order.

December 1, 2011 IR&DM, WS'11/12 V.11

Encoding of 31415926535897932

using b=3 bitwise coding blocks

for the code section.

Interpolative Coding (IPC)
[Moffat, Stuiver: IR’00]

• IPC directly encodes docIds rather than gaps.

• Specifically aims at bursty/clustered docId’s of similar range.

• Recursively splits input sequence into low-distance ranges.

December 1, 2011 IR&DM, WS'11/12 V.12

<1; 3; 8; 9; 11; 12; 13; 17>

<1; 3; 8; 9;> <11; 12; 13; 17>

<1; 3> <8; 9;> <11; 12> <13; 17>

• Requires ceil(log2(highi – lowi + 1)) bits per number for bucket i in binary!

• But: → Requires the decoder to know all highi/lowi pairs.

 → Need to know large blocks of the input sequence in advance.

December 1, 2011 IR&DM, WS'11/12 V.13

Distribution of docID-gaps on TREC

GOV2 (~25 Mio docs) reporting

averages over 1,000 queries

Compressed docId sizes (MB/query) on

TREC GOV2 (~25 Mio docs) reporting

averages over 1,000 queries

• Variable-length encodings

usually win by far in (de-)

compression speed over

dictionary & entropy-based

schemes, at comparable

compression ratios!
Decompression speed (MB/query) for

TREC GOV2, 1,000 queries

Comparison of Compression Techniques
[Yan, Ding, Suel: WWW’09]

Layout of Index Postings
[J. Dean: WSDM 2009]

word

word skip table block 1 block N …

one block

(with n postings):

delta to last docId in block

#docs in block: n

n-1 docId deltas: RiceM encoded

tf values : Gamma encoded

term attributes: Huffman encoded

term positions: Huffman encoded

payload
(of postings)

docId postings

header

December 1, 2011 V.14 IR&DM, WS'11/12

layout
allows
incremental
decoding

Additional Literature for Chapters V.1-2

December 1, 2011 IR&DM, WS'11/12 V.15

Indexing with inverted files:
• J. Zobel, A. Moffat: Inverted Files for Text Search Engines, Comp. Surveys 2006
• S. Brin, L. Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine,
 WWW 1998
• L.A. Barroso, J. Dean, U. Hölzle: Web Search for a Planet: The Google Cluster
 Architecture. IEEE Micro 2003
• J. Dean, S. Ghemawat: MapReduce: Simplified Data Processing in Large Clusters,
 OSDI 2004
• X. Long, T. Suel: Three-Level Caching for Efficient Query Processing in
 Large Web Search Engines, WWW 2005
• H. Yan, S. Ding, T. Suel: Compressing Term Positions in Web Indexes, SIGIR 2009
• J. Dean: Challenges in Building Large-Scale Information Retrieval Systems,
 Keynote, WSDM 2009, http://videolectures.net/wsdm09_dean_cblirs/

Inverted index compression:
• Marvin Zukowski, Sándor Héman, Niels Nes, Peter A. Boncz: Super-Scalar RAM-CPU

Cache Compression. ICDE 2006
• Jiangong Zhang, Xiaohui Long, Torsten Suel: Performance of compressed inverted list

caching in search engines. WWW 2008
• Alistair Moffat, Lang Stuiver: Binary Interpolative Coding for Effective Index Compression.

Inf. Retr. 3(1): 25-47 (2000)
• Hao Yan, Shuai Ding, Torsten Suel: Inverted index compression and query processing with

optimized document ordering. WWW 2009

http://videolectures.net/wsdm09_dean_cblirs/

