Chapter IX:

1. The general idea

2. Matrix factorization methods
3. Latent topic models

4. Dimensionality reduction

*Zaki & Meira, Ch. 8; Tan, Steinbach & Kumar, App. B; Manning, Raghavan & Schiitze, Ch. 18
Extra reading: Golub & Van Loan: Matrix computations. 3rd ed., JHU press, 1996

[R&DM, WS'11/12 19 Januar y 2012 IX.2&3-1

IX.2 Matrix factorization methodSil

1. Eigendecomposition

. Singular value decomposition (SVD)
. Principal component analysis (PCA)
. Non-negative matrix factorization

nh & W N

. Other topics in matrix factorizations
5.1. CX matrix factorization
5.2. Boolean matrix factorization
5.3. Regularizers
5.4. Matrix completion

[R&DM, WS'11/12 19 January 2012 [X.2&3-2

Nonnegative matrix factorization (NMF)

* Eigenvectors and singular vectors can have negative
entries even 1f the data 1s non-negative

— This can make the factor matrices hard to interpret in the
context of the data

* In nonnegative matrix factorization we assume the
data 1s nonnegative and we require the factor matrices
to be nonnegative
— Factors have parts-of-whole interpretation

* Data 1s represented as a sum of non-negative elements

— Models many real-world processes

Definition

* Given a nonnegative n-by-m matrix X (1.€. x;; > 0 for
all 7 and j) and a positive integer k, find an n-by-k
nonnegative matrix W and a k-by-m nonnegative
matrix H s.t. ||X — WH]||F* is minimized.

—If £ =min(n,m), we can do W= X and H = I, (or vice versa)
— Otherwise the complexity of the problem 1s unknown

 [f either W or H 1s fixed, we can find the other factor
matrix in polynomial time
— Which gives us our first algorithm. ..

The alternating least squares (ALS)

* Let’s forget the nonnegativity constraint for a while

* The alternating least squares algorithm 1s the

following:

— Intialize W to a random matrix

—repeat
 Fix W and find H s.t.
 Fix H and find W s.t.

—until convergence

2 1s minimized
r% 1S minimized

* For unconstrained least squares we can use H= WX

and W= XH"

* ALS will typically converge to local optimum

NMF and ALS

* With the nonnegativity constraint pseudo-inverse
doesn’t work

— The problem 1s still convex with either of the factor matrices
fixed (but not 1f both are free)

— We can use constrained convex optimization
* In theory, polynomial time
* In practice, often too slow

* Poor man’s nonnegative ALS:

— Solve H using pseudo-inverse
—Setall 4; <0to 0

— Repeat for W

Geometry of NMF

NMF factors =

Datapoints .| o

[R&DM, WS'11/12 19 January 2012 IX.2&3-7

Geometry of NMF

NMF factors
Data points

Convex cone

[R&DM, WS'11/12 19 January 2012 IX.2&3-7

Geometry of NMF

NMF factors
Data points
Convex cone

Projections

[R&DM, WS'11/12

19 January 2012

IX.2&3-7

Multiplicative update rules

* Idea: update W and H 1n small steps towards the
locally optimum solution

— Honor the non-negativity constraint
—Lee & Seung, Nature, "99.

1.Initialize W and H randomly to non-negative matrices
2.repeat
2.1.H=H*(W'X)./(W'WH + ¢)
22.W=W*XH").(WHH" + ¢)
3.until convergence in || X — WH]||r

* Here .* 1s element-wise product, (4.*B);; = a;*b;;, and ./ 1s
element-wise division, (A./B);; = a;i/b;;

* Little value € 1s added to avoid division by 0

Discussion on multiplicative updates

* If W and H are 1nitialized to strictly positive matrices,
they stay strictly positive throughout the algorithm

— Multiplicative form of updates
 If Wand H have zeros, the zeros stay
* Converges slowly
— And has 1ssues when the limit point lies in the boundary

* Lots of computation per update
— Clever implementation helps
— Simple to implement

Gradient descent

* Consider the representation error as a function of W
and H

—f: REx R — Ry, AW, H) = || X — WH||
— We can compute the partial derivatives of/0oW and of/oH

* Observation: The biggest decrease 1n f at point (W,
H) happens at the opposite direction of the gradient

— But this only holds 1n an €-neighborhood of (W, H)

— Theretfore, we make small steps opposite to gradient and re-
compute the gradient

Example of gradient descent

Image: Wikipedia

[R&DM, WS'11/12 19 January 2012 IX.2&3-11

NMF and gradient descent

1.Initialize W and H randomly to non-negative matrices
2.repeat

2.1.H=H — ey ofiloH

22.W=W —ewof/loW
3.until convergence in || X — WH]||r

NMF and gradient descent

S’rep size

1. Initialize W and to non-negative matrices
2.repeat

2.1.H=H-endfioH
22.W=W- swaf/aW

S’rep size

Issues with gradient descent

* Step sizes are important

— Too big step size: error increases, not decrease
— Too small step size: very slow convergence

— Fixed step sizes don’t work
* Have to adjust somehow

— Lots of research work put on this

* Ensuring the non-negativity
— The updates can make factors negative
— Easiest option: change all negative values to 0 after each update

* Updates are expensive
* Multiplicative update 1s a type of gradient descent

— Essentially, the step size 1s adjusted

ALS vs. gradient descent

* Both are general techniques
— Not tied to NMF

* More general version of ALS 1s called alternating
projections
— Like ALS, but not tied to least-squares optimization
— We must know how to optimize one factor given the other

* Or we can approximate this, too...

* In gradient descent function must be derivable
— (Quasi-)Newton methods study also the second derivative
* Even more computationally expensive

— Stochastic gradient descent updates random parts of factors

« Computationally cheaper but can yield slower convergence

Other topics 1n matrix factorizations

* Eigendecomposition, SVD, PCA, and NMF are just
few examples of possible factorizations

* New factorizations try to address specific 1ssues
— Sparsity of the factors (number of non-zero elements)
— Interpretability of the factors
— Other loss functions (sum-of-absolute differences, ...)
— Over- and underfitting

The CX factorization

* G1ven a data matrix D, find a subset of columns of D
in matrix C and a matrix X s.t. ||[D — CX]|r is
minimized
— Interpretability: 1f columns of D are easy to interpret, so are

columns of C
— Sparsity: 1f all columns of D are sparse, so are columns of C
— Feature selection: selects actual columns

— Approximation accuracy: if Dy 1s the rank-k truncated SVD
of D and C has k columns, then with high probability

|D — CX|l¢ < O(ky/logk) |D — Dxlly

[Boutsidis, Mahoney & Drineas, KDD 08, SODA *09]

Tiling databases

* Let X be n-by-m binary matrix (e.g. transaction data)

— Let r be a p-dimensional vector of row indices (1 <r; < n)

— Let ¢ be a g-dimensional vector of column indices (1 <c¢; < m)

— The p-by-g combinatorial submatrix induced by r and c 1s

XT1C1 XT1C2 XT1C3 Xrlcq
XT2C1 XT2C2 XT2C3 C XTqu

X(r, C) — | Xr3c1 Xr3en Xrics Xricq
X X X R X

— X(r,c) 1s monochromatic 1f all of 1ts values have the same value
(0 or 1 for binary matrices)
* If X(r,c) 1s monochromatic 1, it (and (#,c) pair) 1s called a tile
[Geerts, Goethals & Mielikdinen, DS 04]

Tiling problems

* Minimum tiling. Given X, find the least number of
tiles (r,c) such that

—For all (i,j) s.t. x;; = 1, there exists at least one pair (r,c¢) such
thatiErandj € c (1.€. x; € X(r,c))

eicrifexistsjst.ri=i
* Maximum A-tiling. Given X and integer £, find £ tiles
(r, ¢) such that

— The number of elements x;; = 1 that do not belong 1n some
X(r,c) 1s minimized

Tiling and itemsets

 Each tile defines an 1itemset and a set of transactions
where the itemset appears

— Minimum tiling: each recorded transaction—1tem pair must
appear 1in some tile

—Maximum A-tiling: minimize the number of transaction—
item pairs not appearing on selected tiles

* [temsets are local patterns, but tiling 1s global

Algorithm for tiling

* Algorithm for tiling:
—Find all itemset, inducing tiles

— Select first the biggest-area tile (pg 1s largest) and mark the
submatrix covered

— Select the tile that has most not-yet covered elements and
mark 1t covered

— Repeat previous step until

» all transaction—1item pairs are covered or
* we have selected £ tiles

* Problem: exponential number of itemsets

— Heuristic solution: mine only reasonably frequent closed
itemsets

Tiling and matrix factorizations

* An 1index vector can be represented using an
incidence vector

— The 1incidence vector of r 1s a binary n-dimensional vector
(r)st.y(r)i=11i1tticr

* The submatrix X(r,c) can be written as y(r)y(c)’
—n-by-m binary matrix with (y(r)y(c));=11iffiErandj € c
— Columns of R are the incidence vectors of k£ row indices for

tiles

e Columns of C are the incidence vectors of £ column indices for
tiles

— The non-zeros of RC? define the transaction—item pairs in
the tiling

Boolean matrix multiplication

* We want to write:

— Minimum tiling: find R and C s.t. X= RC?

— Maximum £-tiling: find R and C s.t. | X — RC"] is minimized
* But this 1s wrong

— RC" is not binary, can have values > 1 (overlap)
— Notice how clustering avoids this!

* Intuitively we do set union

—If x;; belongs to many tiles, we still count 1t only once

* Solution: Boolean matrix multiplication

k
(Ro CT)ij = \/ Ti1Cj1
=1

Boolean matrix multiplication

* We want to write: X =RoC

e o

—Minimum tiling: find R and C s.t. X=R

—Maximum i-tiling: find R and C s.t. Z=R€*| 1s minimized
* But this 1s wrong 1X - RoCTl

— RC" is not binary, can have values > 1 (overlap)
— Notice how clustering avoids this!

* Intuitively we do set union

—If x;; belongs to many tiles, we still count 1t only once

* Solution: Boolean matrix multiplication

k
(Ro CT)ij = \/ Ti1Cj1
=1

Boolean matrix factorization (BMF)

* Tiling still requires that the tiles are monochromatic
—If (RoC");; =1 then X;; =1

—This can be problematic if data has noise
* Tiles must be broke down

* Removing the monochromaticity requirement gives
Boolean matrix factorization:

— Given binary X and nonnegative £, find n-by-k A and
k-by-m B s.t. | X — AoB| 1s minimized

* BMF generalizes tiling by allowing noise
* BMF generalizes clustering by allowing overlaps

BMF example

1 0
X=11 1
0 1

N S N =

BMF example

1 0
X=11 1
0 1

(1 1 0)=",

N S N =

BMF example

BMF example

1
X=11
0

p—
—_— O
N——

(1 1 0)=",
1\ /1 1 0
(11: 1 1 1 O :albl
0/ \0 0 0
0 1 1)=0

BMF example

BMF example

— o y— _— e - O — O — —
_— o _— o OO

~ ' ~— _ S OO O
| N ~— N
-— e O O v

| |

— [\

S S

BMF example

BMF example

BMF example

Regularizers

* We used regularizers with linear regression to prevent

over-fitting

« Similar 1deas work with matrix factorization

— With so-called Lz-regularizer the squared loss function 1s
2 2 2
IX = ABJ[g + A [[Aflf + A [Bl

* A1 and A, are regularizer parameters
* The problem 1is still convex (and quadratic) 1f

— We can mix-and-match distances and regu!
[X —AB|[; + A |A] + A |B

one factor 1s fixed

arizers:

Matrix completion

 The standard matrix factorization formulation
assumes that all values ot X are known

* In matrix completion setting, some values are
unknown

* The 1dea 1s to compute a factorization of the data
using the known values and fill in the unknown based
on this factorization

— When computing the factorization, unknown values do not
cause error

Completion example

? 10 16 7
A=14 95 ?7 195
T ? 39 7

Completion example

? 10 16 7
A=14 95 ?7 195
T ? 39 7

Completion example

? 10 16 7
A=14 95 ?7 195
T ? 39 7

4 10 16 22
XY=14 95 145 195

11 25 39 33

Recommender systems

* Data about users and products
— Which products users liked/purchased/rented/watched

 Lots of unknowns

— If user hasn’t seen the product, we don’t know would she like/buy/
rent/watch 1t

* Goal: recommend new products to users based on what
people with similar tastes also liked

— User’s taste 1s learned from the data

* One way to do this: matrix completion

— Each column factor corresponds to a group” of users with similar
tastes

— Each row factor corresponds to a ’group” of similarly-liked
products

Netflix example

* Data: users and movie ratings (15 stars)

— 1/2 million users, 18 000 movies, 100 million ratings
* 99% of values were unknown

* Algorithms were compared based on how well they
predicted the values 1n test set

—Ratings known by the jury but unknown to the competitors

* Winner was awarded $1 000 000

* Winning algorithm was an ensemble method
— Matrix factorization gave very important contribution

IX.3 Latent topic models il

1. Basic idea

2. Latent semantic indexing (LSI)

3. Probabilistic latent semantic indexing (pLSI)
4. Latent Dirichlet allocation (LDA)

[R&DM, WS'11/12 19 January 2012 IX.2&3-30

Basic 1dea

* Consider a terms-by-documents matrix

— Some terms are synonymous
* ‘Internet’ and ‘web’

—Some terms are polysemic
* ‘Java’ can be 1sland, coffee, or programming language

* We aim to ‘group’ similar terms together

— We also want to group documents together

Latent topic models

* We assume there’s a small number of latent topics

* Generative process for documents:
— Choose (latent) topic
— Choose terms based on the (latent) topic

* We need to find

— Mapping between documents and topics
— Mapping between topics and terms

* But 1f we want linear mappings, then this 1s matrix
factorization...

Latent semantic indexing (L SI)

* Idea: apply SVD to vector space model

* A is m-by-n term-document matrix and 4 = UX V" its
SVD

— Uy, Vi, and Xk contain the first & singular vectors and values

* We interpret:
— Ui maps terms to topics

— Vi maps documents to topics (or Z¥7 topics to documents)

doc j }l_ate.ntt
opic T
A . Uk p, z:k Vk

] | ececcccccccce E oooooooooo o~ oooooioo (Y e O, | | X | eeeccccccccce : latent
term i : ~ : X % k X ~ topic t

mxk

Operations 1n latent topic space

* An m-dimensional vector ¢ in term space 1s mapped to
the k-dimensional topic space by g = Ui'q

— Vector g could be a query of terms

* The mapped query 1s evaluated in the topic vector
space Vi
— Scalar-product similarity: Vilg’ = Vi'Ui'q
— Alternatively e.g. cosine similarity can be used

* A new document can be transformed to the topic space
similarly and then appended to Vi! as a new column

— Quality deteriorates over time

LSI example (1)

m=6 terms n=5 documents
t1: bak(e,ing) d1: How to bake bread without recipes
t2: recipe(s) d2: The classic art of Viennese Pastry
t3: bread d3: Numerical recipes: the art of
t4: cake scientific computing
t5: pastr(y,ies) d4: Breads, pastries, pies and cakes:
t6: pie quantity baking recipes

d5: Pastry: a book of best French recipes

0.5774 0.0000 0.0000 0.4082 0.0000"
0.5774 0.0000 1.0000 0.4082 0.7071
0.5774 0.0000 0.0000 0.4082 0.0000
0.0000 0.0000 0.0000 0.4082 0.0000
0.0000 1.0000 0.0000 0.4082 0.7071

0.0000 0.0000 0.0000 0.4082 0.0000,

LSI example (2)

(0.2670 —0.2567 0.5308 —0.2847)
0.7479 —0.3981 —0.5249 0.0816
0.2670 —0.2567 0.5308 —0.2847 U
0.1182 —-0.0127 0.2774 0.6394
0.5198 0.8423 0.0838 —0.1158
\0.1182 -0.0127 0.2774 0.6394)

(1.6950 0.0000 0.0000 0.0000°
0.0000 1.1158 0.0000 0.0000 2
0.0000 0.0000 0.8403 0.0000
. 0.0000 0.0000 0.0000 0.4195)

[0.4366 0.3067 0.4412 0.4909 0.5288)

-0.4717 0.7549 -0.3568 —0.0346 0.2815
0.3688 0.0998 —-0.6247 0.5711 -0.3712

\—0.6715 -0.2760 0.1945 0.6571 —0.0577)

LSI example (3)

[0.4971 —0.0330 0.0232 0.4867 —0.0069"
0.6003 0.0094 0.9933 0.3858 0.7091
0.4971 —0.0330 0.0232 0.4867 —0.0069
0.1801 0.0740 —-0.0522 0.2320 0.0155

—0.0326 0.9866 0.0094 0.4402 0.7043

. 0.1301 0.0740 —-0.0522 0.2320 0.0155)

= Us X3 V3!

LSI example (4)

* Query q: baking bread
—g=(101000)
— g’ = UsTq = (0.5340 —0.5134 1.0616)7

e Scalar product similarity in topic space
—sim(q, d1) =(V3(:,1)7, ¢°) = 0.86
— sim(q, d2) = (V3(:,2)T, ¢°) = —0.12
— sim(q, d3) = (V3(:,3), ¢’y = -0.24

* Adding document d6 ’algorithmic recipes for the
computation of pie”
—d=(00.707100 0 0.7071)7
—d’=UsTd = (0.5-0.28 —0.15)7
— d’ becomes a new column of V;”

Issues with LSI

* How to select proper £?
— Different &£ makes different terms related

— We don’t know a priori which terms are related and which
are not

 Memory consumption

— Terms-by-documents matrices are sparse
* Most terms don’t appear on most documents
— SVD factors U and V are (almost) never sparse

* Even 1f we have relatively small £, we might need more space to
store the factors than to store the original matrix

* Has not shown convincing results for Web search
engines

