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Chapter IX: Matrix factorizations*
1. The general idea
2. Matrix factorization methods
3. Latent topic models
4. Dimensionality reduction

1

*Zaki & Meira, Ch. 8; Tan, Steinbach & Kumar, App. B; Manning, Raghavan & Schütze, Ch. 18
  Extra reading: Golub & Van Loan: Matrix computations. 3rd ed., JHU press, 1996
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IX.2 Matrix factorization methods

2

1. Eigendecomposition
2. Singular value decomposition (SVD)
3. Principal component analysis (PCA)
4. Non-negative matrix factorization
5. Other topics in matrix factorizations

5.1. CX matrix factorization
5.2. Boolean matrix factorization
5.3. Regularizers
5.4. Matrix completion
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Nonnegative matrix factorization (NMF)
• Eigenvectors and singular vectors can have negative 

entries even if the data is non-negative
–This can make the factor matrices hard to interpret in the 

context of the data
• In nonnegative matrix factorization we assume the 

data is nonnegative and we require the factor matrices 
to be nonnegative
– Factors have parts-of-whole interpretation
•Data is represented as a sum of non-negative elements

–Models many real-world processes

3
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Definition
• Given a nonnegative n-by-m matrix X (i.e. xij ≥ 0 for 

all i and j) and a positive integer k, find an n-by-k 
nonnegative matrix W and a k-by-m nonnegative 
matrix H s.t. ||X – WH||F2 is minimized.
– If k = min(n,m), we can do W = X and H = Im (or vice versa)
–Otherwise the complexity of the problem is unknown

• If either W or H is fixed, we can find the other factor 
matrix in polynomial time
–Which gives us our first algorithm…

4



IR&DM, WS'11/12 IX.2&3-19 January 2012

The alternating least squares (ALS)
• Let’s forget the nonnegativity constraint for a while
• The alternating least squares algorithm is the 

following:
– Intialize W to a random matrix
– repeat 
• Fix W and find H s.t. ||X – WH||F2 is minimized
• Fix H and find W s.t. ||X – WH||F2 is minimized

– until convergence
• For unconstrained least squares we can use H = W†X 

and W = XH†

• ALS will typically converge to local optimum
5
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NMF and ALS
• With the nonnegativity constraint pseudo-inverse 

doesn’t work
–The problem is still convex with either of the factor matrices 

fixed (but not if both are free)
–We can use constrained convex optimization
• In theory, polynomial time
• In practice, often too slow

• Poor man’s nonnegative ALS:
– Solve H using pseudo-inverse
– Set all hij < 0 to 0
–Repeat for W

6
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Multiplicative update rules
• Idea: update W and H in small steps towards the 

locally optimum solution
–Honor the non-negativity constraint
–Lee & Seung, Nature, ’99: 

•Here .* is element-wise product, (A.*B)ij = aij*bij, and ./ is 
element-wise division, (A./B)ij = aij/bij

•Little value ε is added to avoid division by 0

8

1.Initialize W and H randomly to non-negative matrices
2.repeat 

2.1.H = H.*(WTX)./(WTWH + ε)
2.2.W = W.*(XHT)./(WHHT + ε)

3.until convergence in ||X – WH||F
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Discussion on multiplicative updates
• If W and H are initialized to strictly positive matrices, 

they stay strictly positive throughout the algorithm
–Multiplicative form of updates

• If W and H have zeros, the zeros stay
• Converges slowly
–And has issues when the limit point lies in the boundary

• Lots of computation per update
–Clever implementation helps
– Simple to implement

9
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Gradient descent
• Consider the representation error as a function of W 

and H
– f: ℝn×k × ℝk×m → ℝ+, f(W, H) = ||X – WH||F2

–We can compute the partial derivatives ∂f/∂W and ∂f/∂H
• Observation: The biggest decrease in f at point (W, 

H) happens at the opposite direction of the gradient
–But this only holds in an ε-neighborhood of (W,H)
–Therefore, we make small steps opposite to gradient and re-

compute the gradient

10
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Example of gradient descent

11

Image: Wikipedia
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NMF and gradient descent

12

1.Initialize W and H randomly to non-negative matrices
2.repeat 

2.1.H = H – εH ∂f/∂H
2.2.W = W – εW ∂f/∂W

3.until convergence in ||X – WH||F
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NMF and gradient descent

12

1.Initialize W and H randomly to non-negative matrices
2.repeat 

2.1.H = H – εH ∂f/∂H
2.2.W = W – εW ∂f/∂W

3.until convergence in ||X – WH||F

Step size

Step size
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Issues with gradient descent

13

• Step sizes are important
– Too big step size: error increases, not decrease
– Too small step size: very slow convergence
– Fixed step sizes don’t work
• Have to adjust somehow

– Lots of research work put on this
• Ensuring the non-negativity
– The updates can make factors negative
– Easiest option: change all negative values to 0 after each update

• Updates are expensive
• Multiplicative update is a type of gradient  descent
– Essentially, the step size is adjusted 
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ALS vs. gradient descent
• Both are general techniques
–Not tied to NMF

• More general version of ALS is called alternating 
projections
– Like ALS, but not tied to least-squares optimization
–We must know how to optimize one factor given the other
•Or we can approximate this, too…

• In gradient descent function must be derivable
– (Quasi-)Newton methods study also the second derivative
• Even more computationally expensive

– Stochastic gradient descent updates random parts of factors
• Computationally cheaper but can yield slower convergence

14
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Other topics in matrix factorizations
• Eigendecomposition, SVD, PCA, and NMF are just 

few examples of possible factorizations
• New factorizations try to address specific issues
– Sparsity of the factors (number of non-zero elements)
– Interpretability of the factors
–Other loss functions (sum-of-absolute differences, …)
–Over- and underfitting
–…

15
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The CX factorization
• Given a data matrix D, find a subset of columns of D 

in matrix C and a matrix X s.t. ||D – CX||F is 
minimized
– Interpretability: if columns of D are easy to interpret, so are 

columns of C 
– Sparsity: if all columns of D are sparse, so are columns of C
– Feature selection: selects actual columns
–Approximation accuracy: if Dk is the rank-k truncated SVD 

of D and C has k columns, then with high probability

16

kD- CXkF 6 O(k
p

log k) kD-DkkF

[Boutsidis, Mahoney & Drineas, KDD ’08, SODA ’09] 
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Tiling databases
• Let X be n-by-m binary matrix (e.g. transaction data)
– Let r be a p-dimensional vector of row indices (1 ≤ ri ≤ n) 
– Let c be a q-dimensional vector of column indices (1 ≤cj ≤ m)
– The p-by-q combinatorial submatrix induced by r and c is

– X(r,c) is monochromatic if all of its values have the same value  
(0 or 1 for binary matrices)
• If X(r,c) is monochromatic 1, it (and (r,c) pair) is called a tile

17

X(r, c) =

0

BBBBB@

xr1c1 xr1c2 xr1c3 xr1cq

xr2c1 xr2c2 xr2c3 · · · xr2cq

xr3c1 xr3c2 xr3c3 xr3cq

...
. . .

...
xrpc1 xrpc2 xrpc3 · · · xrpcq

1

CCCCCA

[Geerts, Goethals & Mielikäinen, DS ’04]
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Tiling problems
• Minimum tiling. Given X, find the least number of 

tiles (r,c) such that
– For all (i,j) s.t. xij = 1, there exists at least one pair (r,c) such 

that i ∈ r and j ∈ c (i.e. xij ∈ X(r,c))
• i ∈ r if exists j s.t. rj = i

• Maximum k-tiling. Given X and integer k, find k tiles 
(r, c) such that
–The number of elements xij = 1 that do not belong in some 

X(r,c) is minimized

18
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Tiling and itemsets
• Each tile defines an itemset and a set of transactions 

where the itemset appears
–Minimum tiling: each recorded transaction–item pair must 

appear in some tile
–Maximum k-tiling: minimize the number of transaction–

item pairs not appearing on selected tiles
• Itemsets are local patterns, but tiling is global

19
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Algorithm for tiling
• Algorithm for tiling:
– Find all itemset, inducing tiles
– Select first the biggest-area tile (pq is largest) and mark the 

submatrix covered
– Select the tile that has most not-yet covered elements and 

mark it covered
–Repeat previous step until
• all transaction–item pairs are covered or
•we have selected k tiles

• Problem: exponential number of itemsets 
–Heuristic solution: mine only reasonably frequent closed 

itemsets
20
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Tiling and matrix factorizations
• An index vector can be represented using an 

incidence vector
–The incidence vector of r is a binary n-dimensional vector 
χ(r) s.t. χ(r)i = 1 iff i ∈ r

• The submatrix X(r,c) can be written as χ(r)χ(c)T

– n-by-m binary matrix with (χ(r)χ(c)T)ij = 1 iff i ∈ r and j ∈ c
–Columns of R are the incidence vectors of k row indices for 

tiles
•Columns of C are the incidence vectors of k column indices for 

tiles
–The non-zeros of RCT define the transaction–item pairs in 

the tiling
21
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Boolean matrix multiplication
• We want to write:
–Minimum tiling: find R and C s.t. X = RCT

–Maximum k-tiling: find R and C s.t. |X – RCT| is minimized
• But this is wrong
–RCT is not binary, can have values > 1 (overlap)
–Notice how clustering avoids this!

• Intuitively we do set union
– If xij belongs to many tiles, we still count it only once

• Solution: Boolean matrix multiplication

22

(R �CT )ij =
k_

l=1

rilcjl
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(R �CT )ij =
k_

l=1

rilcjl

X = RoCT

|X – RoCT|
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Boolean matrix factorization (BMF)
• Tiling still requires that the tiles are monochromatic
– If (R○CT)ij = 1 then Xij = 1
–This can be problematic if data has noise
•Tiles must be broke down

• Removing the monochromaticity requirement gives 
Boolean matrix factorization:
–Given binary X and nonnegative k, find n-by-k A and 

k-by-m B s.t. |X – A○B| is minimized
• BMF generalizes tiling by allowing noise
• BMF generalizes clustering by allowing overlaps

23
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BMF example
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Regularizers
• We used regularizers with linear regression to prevent 

over-fitting
• Similar ideas work with matrix factorization
–With so-called L2-regularizer the squared loss function is 

• λ1 and λ2 are regularizer parameters
•The problem is still convex (and quadratic) if one factor is fixed

–We can mix-and-match distances and regularizers:

25

kX-ABk2
F + �1 kAk2

F + �2 kBk2
F

kX-ABk2
F + �1 |A|+ �2 |B|



IR&DM, WS'11/12 IX.2&3-19 January 2012

Matrix completion
• The standard matrix factorization formulation 

assumes that all values of X are known
• In matrix completion setting, some values are 

unknown
• The idea is to compute a factorization of the data 

using the known values and fill in the unknown based 
on this factorization
–When computing the factorization, unknown values do not 

cause error

26
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Completion example

27
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Completion example
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Completion example

27
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Recommender systems

28

• Data about users and products
– Which products users liked/purchased/rented/watched

• Lots of unknowns
– If user hasn’t seen the product, we don’t know would she like/buy/

rent/watch it
• Goal: recommend new products to users based on what 

people with similar tastes also liked
– User’s taste is learned from the data

• One way to do this: matrix completion
– Each column factor corresponds to a ”group” of users with similar 

tastes
– Each row factor corresponds to a ”group” of similarly-liked 

products 
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Netflix example
• Data: users and movie ratings (1–5 stars)
– 1/2 million users, 18 000 movies, 100 million ratings
• 99% of values were unknown

• Algorithms were compared based on how well they 
predicted the values in test set 
–Ratings known by the jury but unknown to the competitors

• Winner was awarded $1 000 000
• Winning algorithm was an ensemble method
–Matrix factorization gave very important contribution

29
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IX.3 Latent topic models
1. Basic idea
2. Latent semantic indexing (LSI)
3. Probabilistic latent semantic indexing (pLSI)
4. Latent Dirichlet allocation (LDA)

30
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Basic idea
• Consider a terms-by-documents matrix
– Some terms are synonymous 
• ‘Internet’ and ‘web’

– Some terms are polysemic 
• ‘Java’ can be island, coffee, or programming language

• We aim to ‘group’ similar terms together
–We also want to group documents together

31
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Latent topic models
• We assume there’s a small number of latent topics 
• Generative process for documents:
–Choose (latent) topic
–Choose terms based on the (latent) topic

• We need to find
–Mapping between documents and topics
–Mapping between topics and terms

• But if we want linear mappings, then this is matrix 
factorization…

32
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Latent semantic indexing (LSI)
• Idea: apply SVD to vector space model
• A is m-by-n term-document matrix and A = UΣVT its 

SVD
–Uk, Vk, and Σk contain the first k singular vectors and values

• We interpret:
–Uk maps terms to topics
–Vk maps documents to topics (or ΣVT topics to documents)

33
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4.3.3 Latent Semantic Indexing (LSI) [Deerwester et al. 1990]:

Applying SVD to Vector Space Model
A is the mun term-document similarity matrix. Then:
• U and Uk are the mur and muk term-topic similarity matrices,
• V and Vk are the nur and nuk document-topic similarity matrices,
• AuAT and AkuAk

T are the mum term-term similarity matrices,
• ATuA  and Ak

TuAk are the nun document-document similarity matrices
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Operations in latent topic space
• An m-dimensional vector q in term space is mapped to 

the k-dimensional topic space by q ↦ UkTq 
–Vector q could be a query of terms

• The mapped query is evaluated in the topic vector 
space Vk

– Scalar-product similarity: VkTq’ = VkTUkTq
–Alternatively e.g. cosine similarity can be used

• A new document can be transformed to the topic space 
similarly and then appended to VkT as a new column
–Quality deteriorates over time 

34
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LSI example (1)

35
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Example 2 for Latent Semantic Indexing

m=6 terms
t1: bak(e,ing)
t2: recipe(s)
t3: bread
t4: cake
t5: pastr(y,ies)
t6: pie

n=5 documents
d1: How to bake bread without recipes
d2: The classic art of Viennese Pastry
d3: Numerical recipes: the art of

scientific computing
d4: Breads, pastries, pies and cakes:

quantity baking recipes
d5: Pastry: a book of best French recipes
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0000.04082.00000.00000.00000.0
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LSI example (2)
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Example 2 for Latent Semantic Indexing (2)
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LSI example (3)

37

IRDM  WS 2007 4-76

Example 2 for Latent Semantic Indexing (3)

 3A

¸̧
¸
¸
¸
¸
¸
¸

¹

·

¨̈
¨
¨
¨
¨
¨
¨

©

§

�
�

�
��

��

0155.02320.00522.00740.01801.0
7043.04402.00094.09866.00326.0
0155.02320.00522.00740.01801.0
0069.04867.00232.00330.04971.0
7091.03858.09933.00094.06003.0
0069.04867.00232.00330.04971.0

TVU 333 u'u = U3Σ3V3T
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LSI example (4)
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• Query q: baking bread
– q = (1 0 1 0 0 0)T

– q’ = U3Tq = (0.5340 –0.5134 1.0616)T

• Scalar product similarity in topic space
– sim(q, d1) = 〈V3(:,1)T, q’〉 ≈ 0.86
– sim(q, d2) = 〈V3(:,2)T, q’〉 ≈ –0.12
– sim(q, d3) = 〈V3(:,3)T, q’〉 ≈ –0.24

• Adding document d6: ”algorithmic recipes for the 
computation of pie”
– d = (0 0.7071 0 0 0 0.7071)T

– d’ = U3Td ≈ (0.5 –0.28 –0.15)T

– d’ becomes a new column of VkT
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Issues with LSI
• How to select proper k?
–Different k makes different terms related
–We don’t know a priori which terms are related and which 

are not
• Memory consumption
–Terms-by-documents matrices are sparse
•Most terms don’t appear on most documents

– SVD factors U and V are (almost) never sparse
• Even if we have relatively small k, we might need more space to 

store the factors than to store the original matrix

• Has not shown convincing results for Web search 
engines
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