Chapter IX: Matrix factorizations*

- 1. The general idea
- 2. Matrix factorization methods
- 3. Latent topic models
- 4. Dimensionality reduction

*Zaki & Meira, Ch. 8; Tan, Steinbach & Kumar, App. B; Manning, Raghavan & Schütze, Ch. 18 Extra reading: Golub & Van Loan: *Matrix computations*. 3rd ed., JHU press, 1996

IX.2 Matrix factorization methods

- 1. Eigendecomposition
- 2. Singular value decomposition (SVD)
- 3. Principal component analysis (PCA)
- 4. Non-negative matrix factorization
- **5.** Other topics in matrix factorizations
 - **5.1. CX matrix factorization**
 - 5.2. Boolean matrix factorization
 - 5.3. Regularizers
 - **5.4. Matrix completion**

Nonnegative matrix factorization (NMF)

- Eigenvectors and singular vectors can have negative entries even if the data is non-negative
 - This can make the factor matrices hard to interpret in the context of the data
- In **nonnegative matrix factorization** we assume the data is nonnegative and we require the factor matrices to be nonnegative
 - -Factors have parts-of-whole interpretation
 - Data is represented as a sum of non-negative elements
 - -Models many real-world processes

Definition

- Given a nonnegative *n*-by-*m* matrix X (i.e. x_{ij} ≥ 0 for all *i* and *j*) and a positive integer k, find an *n*-by-k nonnegative matrix W and a k-by-m nonnegative matrix H s.t. ||X WH||_{F²} is minimized.
 - If $k = \min(n,m)$, we can do W = X and $H = I_m$ (or vice versa)
 - -Otherwise the complexity of the problem is unknown
- If either *W* or *H* is fixed, we can find the other factor matrix in polynomial time
 - Which gives us our first algorithm...

The alternating least squares (ALS)

- Let's forget the nonnegativity constraint for a while
- The alternating least squares algorithm is the following:
 - -Intialize W to a random matrix
 - -repeat
 - Fix W and find H s.t. $||X WH||_{F^2}$ is minimized
 - Fix **H** and find **W** s.t. $||X WH||_{F^2}$ is minimized
 - -until convergence
- For *unconstrained least squares* we can use $H = W^{\dagger}X$ and $W = XH^{\dagger}$
- ALS will typically converge to *local optimum*

NMF and ALS

- With the nonnegativity constraint pseudo-inverse doesn't work
 - The problem is still *convex* with either of the factor matrices fixed (but not if both are free)
 - -We can use *constrained convex optimization*
 - In theory, polynomial time
 - In practice, often too slow
- Poor man's nonnegative ALS:
 - -Solve *H* using pseudo-inverse
 - -Set all $h_{ij} < 0$ to 0
 - -Repeat for W

Geometry of NMF

NMF factors Data points

Geometry of NMF

- NMF factors Data points
- Convex cone

Geometry of NMF

NMF factors Data points Convex cone

Projections

Multiplicative update rules

- Idea: update W and H in small steps towards the locally optimum solution
 - –Honor the non-negativity constraint
 - -Lee & Seung, Nature, '99:
 - 1. Initialize *W* and *H* randomly to non-negative matrices 2. repeat
 - $2.1.\boldsymbol{H} = \boldsymbol{H}.^{*}(\boldsymbol{W}^{T}\boldsymbol{X})./(\boldsymbol{W}^{T}\boldsymbol{W}\boldsymbol{H} + \varepsilon)$
 - 2.2. $W = W.*(XH^T)./(WHH^T + \varepsilon)$
 - 3. until convergence in $||X WH||_F$
 - Here .* is element-wise product, $(A.*B)_{ij} = a_{ij}*b_{ij}$, and ./ is element-wise division, $(A./B)_{ij} = a_{ij}/b_{ij}$
 - \bullet Little value ϵ is added to avoid division by 0

Discussion on multiplicative updates

- If *W* and *H* are initialized to strictly positive matrices, they stay strictly positive throughout the algorithm

 Multiplicative form of updates
- If *W* and *H* have zeros, the zeros stay
- Converges slowly
 - -And has issues when the limit point lies in the boundary
- Lots of computation per update
 - -Clever implementation helps
 - -Simple to implement

Gradient descent

- Consider the representation error as a function of *W* and *H*
 - $-f: \mathbb{R}^{n \times k} \times \mathbb{R}^{k \times m} \longrightarrow \mathbb{R}_{+}, f(W, H) = ||X WH||_{F}^{2}$
 - We can compute the partial derivatives $\partial f/\partial W$ and $\partial f/\partial H$
- Observation: The biggest decrease in *f* at point (*W*, *H*) happens at the opposite direction of the gradient
 - -But this only holds in an ε -neighborhood of (*W*,*H*)
 - Therefore, we make small steps opposite to gradient and recompute the gradient

Example of gradient descent

Image: Wikipedia

NMF and gradient descent

- Initialize W and H randomly to non-negative matrices
 repeat
 - $2.1.\mathbf{H} = \mathbf{H} \varepsilon_{\mathbf{H}} \partial f / \partial \mathbf{H}$
 - 2.2. $W = W \varepsilon_W \partial f / \partial W$
- 3. until convergence in $||X WH||_F$

NMF and gradient descent

Step size

1. Initialize *W* and *H* randomly to non-negative matrices 2. repeat 2.1. $H = H - \varepsilon_H \partial f / \partial H$ 2.2. $W = W - \varepsilon_W \partial f / \partial W$ 3. until convergence in $||X - WH||_F$

Step size

Issues with gradient descent

- Step sizes are important
 - Too big step size: error increases, not decrease
 - Too small step size: very slow convergence
 - Fixed step sizes don't work
 - Have to adjust somehow
 - Lots of research work put on this
- Ensuring the non-negativity
 - The updates can make factors negative
 - Easiest option: change all negative values to 0 after each update
- Updates are expensive
- Multiplicative update is a type of gradient descent
 - Essentially, the step size is adjusted

ALS vs. gradient descent

- Both are *general* techniques
 Not tied to NMF
- More general version of ALS is called *alternating projections*
 - Like ALS, but not tied to least-squares optimization
 - We must know how to optimize one factor given the other
 - Or we can approximate this, too...
- In gradient descent function must be derivable
 - (Quasi-)Newton methods study also the second derivative
 - Even more computationally expensive
 - Stochastic gradient descent updates random parts of factors
 - Computationally cheaper but can yield slower convergence

Other topics in matrix factorizations

- Eigendecomposition, SVD, PCA, and NMF are just few examples of possible factorizations
- New factorizations try to address specific issues
 - Sparsity of the factors (number of non-zero elements)
 - -Interpretability of the factors
 - Other loss functions (sum-of-absolute differences, ...)
 - -Over- and underfitting

. . .

The CX factorization

- Given a data matrix D, find a subset of columns of D in matrix C and a matrix X s.t. $||D CX||_F$ is minimized
 - Interpretability: if columns of **D** are easy to interpret, so are columns of **C**
 - -Sparsity: if all columns of D are sparse, so are columns of C
 - -Feature selection: selects actual columns
 - Approximation accuracy: if D_k is the rank-*k* truncated SVD of D and C has *k* columns, then with high probability

$$\|\mathbf{D} - \mathbf{C}\mathbf{X}\|_{\mathsf{F}} \leq O(k\sqrt{\log k}) \|\mathbf{D} - \mathbf{D}_{k}\|_{\mathsf{F}}$$

[Boutsidis, Mahoney & Drineas, KDD '08, SODA '09]

Tiling databases

- Let *X* be *n*-by-*m* binary matrix (e.g. transaction data)
 - Let *r* be a *p*-dimensional vector of row indices $(1 \le r_i \le n)$
 - Let *c* be a *q*-dimensional vector of column indices $(1 \le c_j \le m)$
 - The *p*-by-*q* combinatorial submatrix induced by *r* and *c* is

$$\mathbf{X}(\mathbf{r}, \mathbf{c}) = \begin{pmatrix} x_{r_1c_1} & x_{r_1c_2} & x_{r_1c_3} & & x_{r_1c_q} \\ x_{r_2c_1} & x_{r_2c_2} & x_{r_2c_3} & \cdots & x_{r_2c_q} \\ x_{r_3c_1} & x_{r_3c_2} & x_{r_3c_3} & & x_{r_3c_q} \\ \vdots & & \ddots & \vdots \\ x_{r_pc_1} & x_{r_pc_2} & x_{r_pc_3} & \cdots & x_{r_pc_q} \end{pmatrix}$$

-X(r,c) is *monochromatic* if all of its values have the same value (0 or 1 for binary matrices)

• If X(r,c) is monochromatic 1, it (and (r,c) pair) is called a *tile*

[Geerts, Goethals & Mielikäinen, DS '04]

Tiling problems

- Minimum tiling. Given *X*, find the least number of tiles (*r*,*c*) such that
 - -For all (i,j) s.t. $x_{ij} = 1$, there exists at least one pair (r,c) such that $i \in r$ and $j \in c$ (i.e. $x_{ij} \in X(r,c)$)

• $i \in \mathbf{r}$ if exists j s.t. $r_j = i$

- Maximum *k*-tiling. Given *X* and integer *k*, find *k* tiles (*r*, *c*) such that
 - The number of elements $x_{ij} = 1$ that do not belong in some X(r,c) is minimized

Tiling and itemsets

- Each tile defines an itemset and a set of transactions where the itemset appears
 - -Minimum tiling: each recorded transaction-item pair must appear in some tile
 - Maximum *k*-tiling: minimize the number of transaction– item pairs *not* appearing on selected tiles
- Itemsets are local patterns, but tiling is global

Algorithm for tiling

- Algorithm for tiling:
 - -Find all itemset, inducing tiles
 - Select first the biggest-area tile (*pq* is largest) and mark the submatrix *covered*
 - Select the tile that has most not-yet covered elements and mark it covered
 - -Repeat previous step until
 - all transaction-item pairs are covered or
 - we have selected k tiles
- Problem: exponential number of itemsets
 - -Heuristic solution: mine only reasonably frequent closed itemsets

Tiling and matrix factorizations

- An index vector can be represented using an *incidence vector*
 - The incidence vector of *r* is a binary *n*-dimensional vector $\chi(r)$ s.t. $\chi(r)_i = 1$ iff $i \in r$
- The submatrix X(r,c) can be written as $\chi(r)\chi(c)^T$
 - -n-by-m binary matrix with $(\chi(\mathbf{r})\chi(\mathbf{c})^T)_{ij} = 1$ iff $i \in \mathbf{r}$ and $j \in \mathbf{c}$
 - -Columns of **R** are the incidence vectors of k row indices for tiles
 - Columns of *C* are the incidence vectors of *k* column indices for tiles
 - The non-zeros of RC^T define the transaction-item pairs in the tiling

Boolean matrix multiplication

- We want to write:
 - -Minimum tiling: find **R** and **C** s.t. $X = RC^T$
 - -Maximum *k*-tiling: find **R** and **C** s.t. $|X RC^T|$ is minimized
- But this is wrong
 - $-RC^{T}$ is not binary, can have values > 1 (overlap)
 - -Notice how clustering avoids this!
- Intuitively we do set union
 - $-\operatorname{If} x_{ij}$ belongs to many tiles, we still count it only once
- Solution: *Boolean matrix multiplication*

$$(\mathbf{R} \circ \mathbf{C}^{\mathsf{T}})_{ij} = \bigvee_{l=1}^{n} r_{il} c_{jl}$$

Boolean matrix multiplication

- We want to write:
 - Minimum tiling: find **R** and **C** s.t. **X** = **R** C^{T}
 - -Maximum *k*-tiling: find **R** and **C** s.t. $|\mathbf{X} \mathbf{R}\mathbf{C}^T|$ is minimized

 $\mathbf{X} = \mathbf{R}_{\mathbf{0}}\mathbf{C}^{\mathsf{T}}$

 $|\mathbf{X} - \mathbf{R}_0\mathbf{C}^T|$

- But this is wrong
 - $-RC^{T}$ is not binary, can have values > 1 (overlap)
 - -Notice how clustering avoids this!
- Intuitively we do set union
 - $-\operatorname{If} x_{ij}$ belongs to many tiles, we still count it only once
- Solution: *Boolean matrix multiplication*

$$(\mathbf{R} \circ \mathbf{C}^{\mathsf{T}})_{ij} = \bigvee_{l=1}^{n} r_{il} c_{jl}$$

k

Boolean matrix factorization (BMF)

- Tiling still requires that the tiles are monochromatic
 - $\text{If} (\mathbf{R} \circ \mathbf{C}^T)_{ij} = 1 \text{ then } X_{ij} = 1$
 - -This can be problematic if data has noise
 - Tiles must be broke down
- Removing the monochromaticity requirement gives *Boolean matrix factorization*:
 - Given binary X and nonnegative k, find n-by-k A and k-by-m B s.t. $|X A \circ B|$ is minimized
- BMF generalizes tiling by allowing noise
- BMF generalizes clustering by allowing overlaps

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
$$(1 \quad 1 \quad 0) = \mathbf{b}_1$$
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{a}_1 \mathbf{b}_1$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{a}_1 \mathbf{b}_1$$
$$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix} = \mathbf{b}_2$$
$$\mathbf{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{a}_1 \mathbf{b}_1$$
$$\begin{pmatrix} 0 & 1 & 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{b}_2$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{A} \circ \mathbf{B}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{a}_1 \mathbf{b}_1$$
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{b}_2$$
$$\mathbf{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{a}_2 \mathbf{b}_2$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{A} \circ$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{a}_1 \mathbf{b}_1$$
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 \end{pmatrix} = \mathbf{b}_2$$
$$\mathbf{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{a}_2 \mathbf{b}_2$$

B

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{A} \circ \mathbf{B}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{a}_1 \mathbf{b}_1$$
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 \end{pmatrix} = \mathbf{b}_2$$
$$\mathbf{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{a}_2 \mathbf{b}_2$$

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{A} \circ$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{b}_{1}$$

$$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix} = \mathbf{b}_2 \\ \mathbf{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathbf{a}_2 \mathbf{b}_2$$

 \mathbf{a}_1

B

Regularizers

- We used regularizers with linear regression to prevent over-fitting
- Similar ideas work with matrix factorization
 - With so-called *L*₂-regularizer the squared loss function is $\|\mathbf{X} - \mathbf{A}\mathbf{B}\|_{F}^{2} + \lambda_{1} \|\mathbf{A}\|_{F}^{2} + \lambda_{2} \|\mathbf{B}\|_{F}^{2}$
 - λ_1 and λ_2 are regularizer parameters
 - The problem is still convex (and quadratic) if one factor is fixed
 - We can mix-and-match distances and regularizers:

$$\left\|\mathbf{X} - \mathbf{A}\mathbf{B}\right\|_{\mathsf{F}}^{2} + \lambda_{1} \left|\mathbf{A}\right| + \lambda_{2} \left|\mathbf{B}\right|$$

Matrix completion

- The standard matrix factorization formulation assumes that all values of *X* are known
- In **matrix completion** setting, some values are unknown
- The idea is to compute a factorization of the data using the known values and fill in the unknown based on this factorization
 - -When computing the factorization, unknown values do not cause error

Completion example

$$\mathbf{A} = \begin{pmatrix} ? & 10 & 16 & ? \\ 4 & 9.5 & ? & 19.5 \\ 11 & ? & 39 & ? \end{pmatrix}$$

Completion example

$$\mathbf{A} = \begin{pmatrix} ? & 10 & 16 & ? \\ 4 & 9.5 & ? & 19.5 \\ 11 & ? & 39 & ? \end{pmatrix}$$
$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 2 & 0.5 \\ 4 & 3 \end{pmatrix} \qquad \mathbf{Y} = \begin{pmatrix} 2 & 4 & 6 & 8 \\ 1 & 3 & 5 & 7 \end{pmatrix}$$

Completion example

$$\mathbf{A} = \begin{pmatrix} ? & 10 & 16 & ? \\ 4 & 9.5 & ? & 19.5 \\ 11 & ? & 39 & ? \end{pmatrix}$$
$$\mathbf{XY} = \begin{pmatrix} 4 & 10 & 16 & 22 \\ 4 & 9.5 & 14.5 & 19.5 \\ 11 & 25 & 39 & 53 \end{pmatrix}$$

Recommender systems

- Data about users and products
 - Which products users liked/purchased/rented/watched
- Lots of unknowns
 - If user hasn't seen the product, we don't know would she like/buy/ rent/watch it
- Goal: recommend new products to users based on what people with similar tastes also liked
 - User's taste is learned from the data
- One way to do this: matrix completion
 - Each column factor corresponds to a "group" of users with similar tastes
 - Each row factor corresponds to a "group" of similarly-liked products

Netflix example

- Data: users and movie ratings (1–5 stars)
 - -1/2 million users, 18 000 movies, 100 million ratings
 - 99% of values were unknown
- Algorithms were compared based on how well they predicted the values in *test set*
 - -Ratings known by the jury but unknown to the competitors
- Winner was awarded \$1 000 000
- Winning algorithm was an ensemble method – Matrix factorization gave very important contribution

IX.3 Latent topic models

1. Basic idea

- 2. Latent semantic indexing (LSI)
- 3. Probabilistic latent semantic indexing (pLSI)
- 4. Latent Dirichlet allocation (LDA)

Basic idea

- Consider a terms-by-documents matrix
 - Some terms are synonymous
 - 'Internet' and 'web'
 - -Some terms are polysemic
 - 'Java' can be island, coffee, or programming language
- We aim to 'group' similar terms together
 - -We also want to group documents together

Latent topic models

- We assume there's a small number of *latent topics*
- Generative process for documents:
 - -Choose (latent) topic
 - -Choose terms based on the (latent) topic
- We need to find
 - -Mapping between documents and topics
 - -Mapping between topics and terms
- But if we want linear mappings, then this is matrix factorization...

Latent semantic indexing (LSI)

- Idea: apply SVD to vector space model
- *A* is *m*-by-*n* term-document matrix and $A = U\Sigma V^T$ its SVD
 - $-U_k$, V_k , and Σ_k contain the first k singular vectors and values
- We interpret:
 - $-U_k$ maps terms to topics
 - $-V_k$ maps documents to topics (or ΣV^T topics to documents)

Operations in latent topic space

- An *m*-dimensional vector q in term space is mapped to the *k*-dimensional topic space by $q \mapsto U_k^T q$
 - Vector *q* could be a *query* of terms
- The mapped query is evaluated in the topic vector space V_k
 - Scalar-product similarity: $V_k^T q' = V_k^T U_k^T q$
 - -Alternatively e.g. cosine similarity can be used
- A new document can be transformed to the topic space similarly and then appended to V_k^T as a new column

 Quality deteriorates over time

LSI example (1)

m=6 terms

- t1: bak(e,ing)
- t2: recipe(s)
- t3: bread
- t4: cake
- t5: pastr(y,ies)
- t6: pie

n=5 documents

- d1: How to bake bread without recipes
- d2: The classic art of Viennese Pastry
- d3: Numerical recipes: the art of scientific computing
- d4: Breads, pastries, pies and cakes: quantity baking recipes
- d5: Pastry: a book of best French recipes

$$A = \begin{pmatrix} 0.5774 & 0.0000 & 0.0000 & 0.4082 & 0.0000 \\ 0.5774 & 0.0000 & 1.0000 & 0.4082 & 0.7071 \\ 0.5774 & 0.0000 & 0.0000 & 0.4082 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.4082 & 0.0000 \\ 0.0000 & 1.0000 & 0.0000 & 0.4082 & 0.7071 \\ 0.0000 & 0.0000 & 0.0000 & 0.4082 & 0.0000 \end{pmatrix}$$

LSI example (2)

$$\begin{pmatrix} 0.2670 & -0.2567 & 0.5308 & -0.2847 \\ 0.7479 & -0.3981 & -0.5249 & 0.0816 \\ 0.2670 & -0.2567 & 0.5308 & -0.2847 \\ 0.1182 & -0.0127 & 0.2774 & 0.6394 \\ 0.5198 & 0.8423 & 0.0838 & -0.1158 \\ 0.1182 & -0.0127 & 0.2774 & 0.6394 \end{pmatrix}$$

 $\times \begin{pmatrix} 1.6950 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 1.1158 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.8403 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.4195 \end{pmatrix}$

$$\times \begin{pmatrix} 0.4366 & 0.3067 & 0.4412 & 0.4909 & 0.5288 \\ -0.4717 & 0.7549 - 0.3568 & -0.0346 & 0.2815 \\ 0.3688 & 0.0998 & -0.6247 & 0.5711 & -0.3712 \\ -0.6715 & -0.2760 & 0.1945 & 0.6571 & -0.0577 \end{pmatrix}$$

U

Σ

 V^T

A =

LSI example (3)

0.4971 - 0.03300.0232 0.4867 - 0.00690.0094 0.3858 0.6003 0.9933 0.7091 0.0232 0.4867 - 0.00690.4971 - 0.0330= 0.1801 0.2320 0.0740 - 0.05220.0155 -0.0326 0.9866 0.0094 0.7043 0.4402 $0.1801 \quad 0.0740 \ -0.0522$ 0.2320 0.0155

$$= U_3 \Sigma_3 V_3^T$$

 $A_{3} =$

LSI example (4)

- Query q: baking bread $-q = (1 \ 0 \ 1 \ 0 \ 0 \ 0)^T$ $-q' = U_3^T q = (0.5340 - 0.5134 \ 1.0616)^T$
- Scalar product similarity in topic space
 - $-\sin(\mathbf{q}, \mathbf{d}\mathbf{1}) = \langle V_3(:, \mathbf{1})^T, \mathbf{q'} \rangle \approx 0.86$

$$-\sin(\mathbf{q}, \mathbf{d}2) = \langle V_3(:,2)^T, \mathbf{q'} \rangle \approx -0.12$$

$$-\sin(\mathbf{q}, \mathbf{d}3) = \langle V_3(:,3)^T, \mathbf{q'} \rangle \approx -0.24$$

- Adding document d6: "algorithmic recipes for the computation of pie"
 - $-d = (0 \ 0.7071 \ 0 \ 0 \ 0.7071)^T$
 - $-d' = U_3^T d \approx (0.5 0.28 0.15)^T$
 - *d'* becomes a new column of V_k^T

Issues with LSI

- How to select proper k?
 - Different *k* makes different terms related
 - We don't know *a priori* which terms are related and which are not
- Memory consumption
 - Terms-by-documents matrices are sparse
 - Most terms don't appear on most documents
 - SVD factors U and V are (almost) never sparse
 - Even if we have relatively small *k*, we might need more space to store the factors than to store the original matrix
- Has not shown convincing results for Web search engines