
Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

T III.1-

Topic III.1: Swap 
Randomization

1



DTDM, WS 12/13 8 January 2013 T III.1-

Topic III.1: Swap Randomization
1. Motivation & Basic Idea
2. Markov Chains and Sampling

2.1. Definitions
2.2. MCMC & the Metropolis Algorithm
2.3. Besag–Clifford Correction

3. Swap Randomization for Binary Data
4. Numerical Data
5. Feedback from Topic II Essays

2



DTDM, WS 12/13 T III.1-8 January 2013

Motivation & Basic Idea
• Permutation test for assessing the significance of a 

data mining result
– Is this itemset significant?
–Are all itemsets that are frequent w.r.t. threshold t 

significant?
– Is this clustering significant?

• Null hypothesis: The results are explained by the 
number of 1s in the rows and columns of the data
–We expect binary data for now
– Previous lecture: only number of 1s per column was fixed
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Basic Setup
• Let D be n-by-m data matrix and let r and c be its row 

and column margins 
• Let M(r, c) be the set of all n-by-m binary matrices 

with row and column margins defined by r and c 
–Let S ⊆ M(r, c) be a uniform random sample of M(r, c)

• Let R(D) be a single number that our data mining 
method outputs
–E.g. the number of frequent itemsets w.r.t. t, the frequency 

of an itemset I, the clustering error
• The empirical p-value for R(D) being big is 

             (|{D’ ∈ S : R(D’) ≥ R(D)}| + 1) / (|S| + 1)
4
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Comments on Empirical p-value
• The empirical p-value for R(D) being big is 

             (|{D’ ∈ S : R(D’) ≥ R(D)}| + 1) / (|S| + 1)
• The +1’s are to avoid having problems with 0s
• If S = M(r, c) this is an exact test 
–+1’s are not needed

• The bigger the sample, the better
– Sample size also controls the maximum accuracy

• Changing the definition for small R(D) or two-tailed 
test is easy
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Swaps

• A swap box of D is a 2-by-2 combinatorial sub-
matrix that is either diagonal or anti-diagonal 
• A swap turns diagonal swap box into anti-diagonal, or 

vice versa
• Theorem [Ryser ’57]. If A, B ∈ M(r, c), then A is 

reachable from B with a finite number of swaps
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Fig. 1. A swap in a 0–1 matrix.

as a condition on the null hypothesis. We assess the results of a data mining
algorithm as significant and interesting if they are highly unlikely to be ob-
served in a random dataset that has the same row and column margins. Using
swap randomization we now can answer questions of the following type: Does
the observed structure convey any information that is unexpected, given the
margins?

Swap randomization is an extension of traditional randomization methods.
For instance, a chi-square test for assessing the significance of frequent itemsets
is a method based on studying the distribution of datasets where the column
margins are fixed, but the row margins are allowed to vary. Similarly, methods
that randomize the target value in prediction tasks keep the column margins
fixed (e.g., Megiddo and Srikant [1998]), but impose no constraint on the row
margins. These techniques are designed for assessing the significance of indi-
vidual patterns or models, and are not appropriate for assessing complex results
of data mining such as clustering or pattern sets. Swap randomization preserves
both row and column margins, and takes into account the global structure of
the dataset. A motivating example for why it is important to maintain both
column and row margins is given in the next section.

Swap randomization has been considered in various applications. An
overview is presented in a survey paper by Cobb and Chen [2003]. A very use-
ful discussion on using Markov chain models in statistical inference is Besag
[2004], where the case of 0–1 data is used as an example. The problem of creat-
ing 0–1 datasets with given row and column margins is of theoretical interest in
itself; see, among others Bezáková et al. [2006] and Dyer [2003]. Closely related
is the problem of generating contingency tables with fixed margins, which has
been studied in statistics (such as Chen et al. [2005]). In general, a large body
of research is devoted to randomization methods [Good 2000].

Our contributions in this article are twofold: (i) We describe the algorithmic
aspects of swap randomization when applied to large datasets, and (ii) we show
how this method can be applied in the data mining setting. In more detail, we
give a description of several different ways of generating random matrices with
given margins and discuss their performance. Swap randomizations are effi-
cient and can be applied to reasonably large datasets, as our experiments show.
We give extensive empirical results showing that some well-known datasets
appear to have very few interesting patterns or cluster centers, while other
datasets have a lot of structure.

The rest of this work is organized as follows. In Section 2 we present an
overview of the swap randomization method, and in Section 3 we discuss the
applications of the approach to specific data mining tasks. Section 4 describes

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 14, Publication date: December 2007.
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Generating Random Samples
• Idea: Starting from the original matrix, perform k 

swaps to obtain a random sample from M(r, c), and 
run the data mining algorithm with this data. Repeat.
–The empirical p-value can be computed from the results
– Simple
–Requires running the data mining algorithm multiple times
•Can be very time consuming with big data sets

• Question: Are we sure we get a uniform sample from 
M(r, c)?
–The results are not valid if the sample is not uniform
–To ensure uniformity, we need a bit more theory…
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Markov Chains and Sampling
• A stochastic process is a family of random variables 

{Xt : t ∈ T}
–Henceforth T = {0, 1, 2, ...} and t is called time 
•This is discrete stochastic process

• Stochastic process {Xt} is Markov chain if always
    Pr[Xt = x | Xt–1 = a, Xt–2 = b, ..., X0 = z] 
 = Pr[Xt = x | Xt–1 = a]
–Memory-less property

• A Markov chain is time-homogenous if for all t
 Pr[Xt+1 = x | Xt = y ] = Pr[Xt = x | Xt–1 = y]
–We only consider time-homogenous Markov chains
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Transition matrix
• The state space of a Markov chain {Xt}t ∈T is the 

countable set S of all values Xt can assume
–Xt: Ω → S for all t ∈ T
–Markov chain is in state s at time t if Xt = s
–A Markov chain {Xt}t ∈T is finite if it has finite state space

• If Markov chain {Xt} is finite and time-homogenous, 
its transition probabilities can be expressed with a 
matrix P = (pij), pij = Pr[X1 = j | X0 = i]
–Matrix P is n-by-n if Markov chain has n states and it is 

right stochastic, i.e. ∑j pij = 1 for all i (rows sum to 1)

9
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Example Markov chain

10
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Classifying the states

11

• State i can be reached from state j if there exists n ≥ 0 
such that (Pn)ij > 0
– Pn is the nth exponent of P, Pn = P×P×…×P

• If i can be reached from j and vice versa, i and j 
communicate
– If all states i, j ∈ S communicate, Markov chain is irreducible

• If the probability that the process visits a state i 
infinitely many times is 1, then state i is recurrent
– State is positive recurrent if the estimated return time to it is 

finite
–Markov chain is recurrent if all of its states are
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More classifying of the states
• State i has period k if any return to i must occur in 

time that is multiple of k:
 k = gcd{n : Pr[Xn = i | X0 = i] > 0}
– State i is aperiodic if it has period k = 1; otherwise it is 

periodic with period k 
–Markov chain is aperiodic if all of its states are

• State i is ergodic if it is aperiodic and positive 
recurrent
–Markov chain is ergodic if all of its states are

12
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Two important results for finite MCs

13

Lemma. Every finite Markov chain has at least one 
recurrent state and all of its recurrent states are positive 

recurrent. 

Corollary. Finite, irreducible, and aperiodic Markov chain 
is ergodic.
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Stationary distributions

14

• If π is such that πi ≥ 0 for all i, ∑i πi = 1, and
   πP = π
then π is the stationary distribution of the Markov 
chain
• Let hii = ∑t≥1 tPr[Xt = i and Xn ≠ i for n < t | X0 =i] be 

the estimated return time to state i

Theorem. If Markov chain is finite, irreducible, and 
ergodic, then
1. it has an unique stationary distribution π
2. for all i and j, limt→∞ (Pt)ji exists and is the same for all j
3. πi = limt→∞ (Pt)ji = 1/hii
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More on stationary distributions
• If Markov chain has a stationary distribution, then the 

probability that the chain is in state i after long-
enough time is independent of the starting time but 
depends only on the stationary distribution
• Aperiodicity is not necessary condition for stationary 

distribution to exist, but then the stationary 
distribution will not be the limit of transition 
probabilities
–Two-state chain that always switches the state has stationary 

distribution (1/2, 1/2), but the transitions look either (1, 2, 1, 
2, ...) or (2, 1, 2, 1, ...) depending on the starting state 

15
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Markov Chain Monte Carlo Method
• The Markov Chain Monte Carlo (MCMC) method 

is a way to sample from probability distributions
• Each possible sample is a state in a Markov chain
• Each state has a neighbour structure giving the 

transitions in the chain
• The chain is build so that its stationary distribution is 

the desired distribution to sample from
• After burn-in period, the chain is well-mixed, and we 

can sample by taking every nth state

16
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Uniform Stationary Distribution
• Lemma. Consider a Markov chain with a finite state 

space. Let N(x) be the set of neighbours of state x, let 
N = maxx |N(x)|, and let M ≥ N. Define the transition 
probabilities by

If this chain is irreducible and aperiodic, then the 
stationary distribution is the uniform distribution.

17
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The Metropolis Algorithm
• The Metropolis algorithm is a general technique to 

transform any irreducible Markov chain into a time-
reversible chain with a required stationary distribution
–A Markov chain is time-reversible if πiPij = πjPji 

• Let N(x), N, and M be as in previous slide, and let π = 
(π1, π2, …, πn) be the desired stationary distribution.
–Let

– If the chain is aperiodic and irreducible, the stationary 
distribution is the desired one
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Notes on the Metropolis Algorithm
• Two-step process: each neighbour is selected with 

probability 1/M, and accepted with probability πy/πx 
–To obtain uniform distribution, only the first step is needed

• We do not need to have the transition matrix defined 
explicitly
–E.g. inifinite state space
–Even with finite chains, MCMC methods can be faster than 

solving the stationary distribution first
• Slightly more general method is known as the 

Metropolis–Hastings algorithm

19
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The Metropolis–Hastings Algorithm
• A generalization of the Metropolis algorithm
• Suppose we have a Markov chain with transition 

matrix Q 
• We generate a new chain where we move from state x 

to state y with probability                          and 
otherwise stay still
• This new chain will have the desired stationary 

distribution 

20
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Besag–Clifford Correction
• The subsequent states in Markov chains are 

dependent
– Subsequent samples in Metropolis are dependent, too
–No problem if we have long-enough (mixing time) gaps 

between samples
•But mixing time is hard to estimate…

• In Besag–Clifford correction, we first run the chain s 
steps backward and then from there k times s steps 
forward
–The original data and random samples are exchangeable
–Time-reversible chains: backward = forward

21
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Swap-Randomization for Binary Data
• To obtain the uniform samples from M(r, c), we use an 

MCMC method
–The states of the chain are the matrices in M(r, c) 
–The neighbours of X are the matrices Y ∈ M(r, c) that are 

reachable from X with a single swap
–But the resulting chain does not have uniform stationary 

distribution
• To ensure the uniform distribution, we have two 

options
–Add multiple self-loops so that each state has the same 

degree
–Use the Metropolis–Hastings algorithm

22
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Self-Loops
• In every state X, we select u.a.r. two elements (i, j) 

and (k, l) of the matrix (i ≠ k, j ≠ l) such that 
Xij = Xkl = 1 
• If the selected elements are corners of a swap box, we 

perform the swap
– Swap box if Xil = Xkj = 0

• Otherwise, we stay at X but consider this a step
• This chain has uniform stationary distribution because 

each state has equivalent degree
–Each self-loop is counted separately

• This chain has long burn-in time
23
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Metropolis–Hastings
• Let N(X) be the number of neighbours of matrix X
• For Metropolis–Hastings, we select Y ∈ N(X) u.a.r. 

and make the transition with probability 
min{N(X)/N(Y), 1}
–To select Y, we use rejection sampling
•Try random pairs (i, j), (k, l) and return the first that defines a 

swap box

• Metropolis–Hastings probably converges faster than 
the self-loop method
–But it needs to know the size of the neighbourhood

24
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Counting the Neighbours
• Theorem. The number of neighbours of X is

       N(X) = J(X) – Z(X) + 2K22(X),
where 
– J(X) is the number of pairs (i, j), (k, l) with distinct i, j, k, 

and l such that Xij = Xkl = 1
•All potential swap boxes

– Z(X) is the number of “Z-structures”: distinct i, j, k, and l 
such that Xij = Xkl = Xkj = 1 
•Non-swap boxes

–K22(X) is the number of 2-by-2 all-1s submatrices of X 
• Z(X) removes some non-swap boxes multiple times

25
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Updating the Neighbour Count
• Theorem. If we know N(X) and Y is obtained from X 

with a single swap, then we can compute N(Y) by
               N(Y) = N(X) – ΔZ + 2ΔK22,
where ΔZ is the change in number of Z-structures and 
ΔK22 is the change in number of 2-by-2 all-1s 
submatrices.
• The change can be computed in time min{n, m} 
–Thus, the convergence is probably faster, but each step costs 

considerably more than with self-loops

26
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Mixing Times for Self-Loop 

27
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Fig. 5. Convergence: The x-axis is the number of steps (× the number of 1’s in the data); the
y-axis is the number of frequent itemsets in the sampled datasets, divided by the number of
frequent itemsets in the original dataset.

Table II. Running Times Needed to Perform Swap
Randomization on the Different Datasets

Dataset time
ABSTRACTS 12m53s
ABSTRACTS′ 9m11s
COURSES 3.35s

Dataset time
KOSARAK 8m38s
PALEO 0.100s
RETAIL 1m1.5s

We report the clock time (in s) needed to perform a number of
swaps equal to 5 times the number of the 1’s in the dataset.

Additionally, the swaps can be performed quite efficiently. Table II shows the
running time for the different datasets, using a simple Perl implementation on
a 3GHz Pentium machine with 2GB of memory. The reported times are for
performing 5L swaps. In most cases a much smaller number of swaps can be
used. For comparison, the time needed to cluster the COURSES and PALEO datasets
into 5 clusters by using a simple implementation of the K-means algorithm are
60 s and 1 s, respectively. Thus, the time needed for swapping is small compared
to the need for running the data mining algorithm on the samples.

5.2 Frequent Itemsets

In this section we assess the results of frequent itemset mining using swap
randomization. Table III shows the number of frequent sets for the datasets
described in Section 5. We compute the collections of frequent sets in the orig-
inal data, in random data under swap randomization, and in random data
under independent permutations of columns (i.e., only column margins are
maintained). The collections are denoted by F , Fs, and Fp, respectively. The
minimum support thresholds were chosen so that the number of frequent sets
is not exceedingly large. Frequent items, that is, frequent sets of size 1, are

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 14, Publication date: December 2007.

Gionis, Mielikäinen & Mannila 2007
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Numerical Data

28

• Swap randomization per se works only for binary 
data
• It can be extended to handle real-valued data
• Two different tasks (null hypotheses):
–Approximately the same value distributions on rows and 

columns
–Approximately the same mean and variance on rows and 

columns
• The algorithms are based on the Metropolis algorithm
–The neighbourhood is based on different local changes 

Ojala et al. 2009
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Local Changes
• One-element changes
–Replace a value
–Add another value

• Four-element changes
–Rotate
• If a = a’ and b = b’, equals to

swap
–Mask
• Preserves row and column sums

29
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Fig. 2 Three simple local modifications based on value replace-
ment (Change and Resample) and value addition (Add). Each
change only one element at a time.

j1 j2
...

...
i1 . . . a . . . b . . ....

...
i2 . . . b′ . . . a′ . . ....

...

j1 j2
...

...
i1 . . . b′ . . . a . . ....

...
i2 . . . a′ . . . b . . ....

...

Fig. 3 An example of local modification Rotate. The four
elements shown are rotated and the rest of the matrix is kept
fixed. If a = a′ and b = b′, then the row and column statistics do
not change.

are depicted in Figure 2. Note that in each case the sym-
metry of the proposal distribution is obtained.

4.3.2. Swap Rotation: Rotate

The next local modification, Rotate, is a generalization
of binary swaps. The idea of swapping matrix elements
as a randomization technique has a long history [4]. Here
we use a concept of swap rotations as shown in Figure 3,
which degenerates to conventional swaps in the case of
binary data. At each step, we randomly choose from the
current matrix four elements a, b, a′, and b′, located at
the intersections of two rows i1 and i2 and two columns
j1 and j2. A new matrix is produced by rotating those
four elements clockwise, while keeping the other elements
unchanged. Again, it is clear that the proposal distribution
is symmetric.

The smaller the difference between (a, b) and (a′, b′), the
smaller the change in the row and column statistics will be.
If a = a′ and b = b′, the row and column statistics do not
change at all, corresponding to binary swaps. In Section 4.4
we will introduce a method called SwapDiscretized which
utilizes this property.

4.3.3. Addition Mask: Mask

Our next modification, Mask, preserves the row and
column sums exactly. As with swap rotation, a new matrix
is created from the current one by selecting rows i1, i2 and
columns j1, j2 at random, and adding the mask presented
in Figure 4 to the four intersection elements. The value α

j1 j2
...

...
i1 . . . . . . . . ....

...
i2 . . . −a . . . +a

+a −a

. . ....
...

Fig. 4 An example of local modification Mask. The addition
mask preserves the row and column sums.

is drawn uniformly at random from the range [−s, s]. In
the experiments, we use parameter value s = 0.1.

4.4. Discrete Swaps

We will see that maintaining the difference measure
E(Â, A) is troublesome. Therefore, we also consider a vari-
ant based on discretization that avoids keeping track of the
difference in the distributions. Denote by Class(x, N) the
function that discretizes x ∈ [0, 1] into a value in 1, . . . , N .
We use the discretization where the range [0, 1] is divided
into N intervals of equal length, thus, Class(x, N) =
min($Nx%, N − 1).

The method SwapDiscretized is based on rotations (recall
Figure 3). At each step, the method samples indices i1, i2
of rows and j1, j2 of columns. Given the number C of
classes for values in columns and the number R of classes
for values in rows, the rotation is accepted if

Class(Âi1j1 , C) = Class(Âi2j2, C) and

Class(Âi1j2, R) = Class(Âi2j1, R).

This guarantees that the distributions of the discretized
values in the rows and columns do not change.

The restrictions that Âi1j1 and Âi2j2 belong to the same
column class as well as Âi1j2 and Âi2j1 to the same
row class can decrease the acceptance rate dramatically.
However, we can select Âi1j1 and Âi2j2 belonging to the
same column class in constant time. This is possible if we
keep track of where the elements in each class are located.
First, we randomly select an element Âi1j1 from the matrix,
and after that, we randomly select Âi2j2 that belongs to the
same class as Âi1j1 . The pseudocode of this approach is
presented in Algorithm 2.

Note that at each step the next state can be the current
state, i.e., there are self-loops in the state space.

4.5. Obtaining Exchangeable Samples

Subsequent samples produced by the Metropolis algo-
rithm are dependent, unless the number of steps taken
between the samples is at least the mixing time. It is very
hard to estimate this quantity in any application. We use

Statistical Analysis and Data Mining DOI:10.1002/sam
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We will see that maintaining the difference measure
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ant based on discretization that avoids keeping track of the
difference in the distributions. Denote by Class(x, N) the
function that discretizes x ∈ [0, 1] into a value in 1, . . . , N .
We use the discretization where the range [0, 1] is divided
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min($Nx%, N − 1).
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classes for values in columns and the number R of classes
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The restrictions that Âi1j1 and Âi2j2 belong to the same
column class as well as Âi1j2 and Âi2j1 to the same
row class can decrease the acceptance rate dramatically.
However, we can select Âi1j1 and Âi2j2 belonging to the
same column class in constant time. This is possible if we
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Note that at each step the next state can be the current
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4.5. Obtaining Exchangeable Samples

Subsequent samples produced by the Metropolis algo-
rithm are dependent, unless the number of steps taken
between the samples is at least the mixing time. It is very
hard to estimate this quantity in any application. We use

Statistical Analysis and Data Mining DOI:10.1002/sam

Rotate

Mask
Ojala et al. 2009
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Acceptance Probability
• The Metropolis algorithm performs the local change 

and accepts the result with a certain probability
• If X is the original matrix, and Y is the result, we 

accept with probability c×exp{–wE(X, Y)}, where
– c is a normalization constant
–w is a weight parameter
–E(X, Y) is a distance measure between X and Y 
•Depends on the task
• Further away the result is from the original, the less likely it is to 

be selected

30
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Distance Measures
• For having approximately the same value 

distributions, we need to measure the distance of 
these distributions
– L1 norm between the observed unnormalized cdf’s
– Faster method: compare histograms

• For approximately the same mean and variance, that’s 
what we must measure
– |s|(|µ – µ’| + |σ – σ’|), where 
• |s| is the number of distinct values
• µ and µ’ are the means of the original and transformed matrix
• σ and σ’ are the standard deviations of the original and 

transformed matrix
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Example
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Algorithm 2 SwapDiscretized(A, I, R,C)

Input: Matrix A, number of attempts I , number of classes in
rows R and columns C

Output: Randomized matrix Â
1: Â ← A
2: for i ← 1, I do
3: Pick i1 and j1 randomly
4: Pick i2 and j2 randomly with Class(Âi1j1 , C) =

Class(Âi2j2 , C)

5: if i1 "= i2 and j1 "= j2 and Class(Âi1j2 , R) =
Class(Âi2j1 , R) then

6: Â ← Rotate(Â, i1, i2, j1, j2)
7: end if
8: end for
9: return Â

the ingenious technique of Besag and Clifford [2] to obtain
a set of exchangeable samples.

The technique of Besag and Clifford consists of first
running the chain I steps backward. That is, given the
original dataset A, we obtain a set Â0 such that there is a
path of length I from Â0 to A. Then for the desired number
k of samples, we start for each i = 1, . . . , k from Â0 and
run the chain I steps forward, obtaining samples Âi . Then
{A, Â1, . . . , Âk} forms an exchangeable set of samples.

That is, if the null hypothesis is true for the original
dataset, A, then the samples A, Â1, . . . , Âk have an under-
lying joint distribution that is exchangeable. Thus, the rank
of S(A) among values {S(A),S(Â1), . . . ,S(Âk)} is uni-
form, implying the validity of the empirical p-value regard-
less of the irreducibility and convergence of the chain. The
result may just be more conservative.

In our case, running the chain backward turns out to be
very easy, as the chain is time-reversible. Thus, running
the chain backward is the same as running it forward. The
method is given in Algorithm 3. The same method can also
be used with SwapDiscretized.

4.6. Examples of Randomizations

Next, we give some visual examples of the results pro-
duced by different randomization approaches. In Figure 5

Algorithm 3 Besag-Clifford(A, k, I, w)

Input: Matrix A, number of samples k, number of attempts I ,
parameter w

Output: Exchangeable set of randomized samples {Â1, . . . , Âk}
1: Â0 ← GeneralMetropolis(A, A, I, w)
2: for i ← 1, k do
3: Âi ← GeneralMetropolis(A, Â0, I, w)
4: end for
5: return {Â1, . . . , Âk}

(a) Original (b) GeneralMetropolis with
                     and difference
measure in distributions

(d) SwapDiscretized(c) General Metropolis with
           and difference measure
in means and variances

Fig. 5 Original data and results of randomization of the original
data with three different methods. Black corresponds to zero and
white to one. The small top left artifact in the original matrix has
disappeared in randomizations, which have produced “shadows”
of the artifact to the top right and bottom left regions. The ran-
domizations resemble each other although different randomization
approaches were used.

randomizations of a 100 × 100 matrix resembling a hilly
surface are shown. The results come from applying our
algorithms with the parameters described in Section 8.2.

The three different randomization methods have produced
similar results. In the randomized matrices, the massive bot-
tom right hill remains, but the smaller top left structure
disappears. The existence of the small hill on the top left
in the original data results in shadow shapes emerging in
the top right and bottom left regions in randomization.

5. PROBABILITY DISTRIBUTION FOR
RANDOMIZED MATRICES

Let A be the original m × n real-valued matrix whose
row and column statistics we wish to maintain. We dis-
cuss the probability distribution Pr(Â|A) from which the
randomized m × n real-valued matrices Â are drawn. The
probability distribution is defined by using a general dif-
ference measure between two sets of real values, such as
the sets of values in a specific row of the original and a
randomized matrix. We introduce two difference measures
corresponding to Tasks 1 and 2 in Section 3.1. The first

Statistical Analysis and Data Mining DOI:10.1002/sam
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1: Â ← A
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of the artifact to the top right and bottom left regions. The ran-
domizations resemble each other although different randomization
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randomizations of a 100 × 100 matrix resembling a hilly
surface are shown. The results come from applying our
algorithms with the parameters described in Section 8.2.

The three different randomization methods have produced
similar results. In the randomized matrices, the massive bot-
tom right hill remains, but the smaller top left structure
disappears. The existence of the small hill on the top left
in the original data results in shadow shapes emerging in
the top right and bottom left regions in randomization.

5. PROBABILITY DISTRIBUTION FOR
RANDOMIZED MATRICES

Let A be the original m × n real-valued matrix whose
row and column statistics we wish to maintain. We dis-
cuss the probability distribution Pr(Â|A) from which the
randomized m × n real-valued matrices Â are drawn. The
probability distribution is defined by using a general dif-
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Some Notes

33

• Masking seems to be a good local modification
• Computing the L1 in cdf’s is very slow
–Approximation using histograms doesn’t hamper the results

• Cannot handle missing values
• Is not good with cases where columns are in different 

scales
–E.g. temperature and rainfall; blood pressure and height
–A method to handle these is presented by Ojala (2010)
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Feedback from Topic II Essay 
• Metro Maps of Science was the most popular choise 

by far
–Applications of Frequent Subgraph Mining was the other 

one selected
– Surprising, as I thought the MMoS as the hardest option

• Overall quality keeps on increasing, great work!
–And also the requirement level increases a bit…

• Once again: if you use figures or tables directly from 
some other paper, you must cite the source in the 
caption of the said table or figure
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