Topic II.1: Frequent Subgraph Mining

Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

TII.1: Frequent Subgraph Mining

1. Definitions and Problems
1.1. Graph Isomorphism
2. Apriori-Based Graph Mining (AGM)
2.1. Labelled Adjacency Matrices
2.2. Matrix Codes
2.3. Normal and Canonical Forms
3. DFS-Based Method: gSpan
3.1. DFS Trees
3.2. DFS Codes and Their Orders
3.3. Candidate Generation

Definitions and Problems

- The data is a set of graphs $D=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$
- Directed or undirected
- The graphs G_{i} are labelled
-Each vertex v has a label $L(v)$
- Each edge $e=(u, v)$ has a label $L(u, v)$
- Data can be e.g. molecule structures

Graph Isomorphism

- Graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are isomorphic if there exists a bijective function $\varphi: V \rightarrow V^{\prime}$ such that $-(u, v) \in E$ if and only if $(\varphi(u), \varphi(v)) \in E^{\prime}$ $-L(v)=L(\varphi(v))$ for all $v \in V$ $-L(u, v)=L(\varphi(u), \varphi(v))$ for all $(u, v) \in E$
- Graph G^{\prime} is subgraph isomorphic to G if there exists a subgraph of G which is isomorphic to G^{\prime}
- No polynomial-time algorithm is known for determining if G and G^{\prime} are isomorphic
- Determining if G^{\prime} is subgraph isomorphic to G is NPhard

Equivalence and Canonical Graphs

- Isomorphism defines an equivalence class
-id: $V \rightarrow V, \operatorname{id}(v)=v$ shows G is isomorphic to itself
-If G is isomorphic to G^{\prime} via φ, then G^{\prime} is isomorphic to G via φ^{-1}
-If G is isomorphic to H via φ and H to I via χ, then G is isomorphic to I via $\varphi \circ \chi$
- A canonization of a graph $G, \operatorname{canon}(G)$ produces another graph C such that if H is a graph that is isomorphic to $G, \operatorname{canon}(G)=\operatorname{canon}(H)$
- Two graphs are isomorphic if and only if their canonical versions are the same

An Example of Isomorphic Graphs

An Example of Isomorphic Graphs

a

An Example of Isomorphic Graphs

An Example of Isomorphic Graphs

Frequent Subgraph Mining

- Given a set D of n graphs and a minimum support parameter minsup, find all connected graphs that are subgraph isomorphic to at least minsup graphs in D
-Enormously complex problem
-For graphs that have m vertices there are
- $2^{O\left(m^{2}\right)}$ subgraphs (not all are connected)
- If we have s labels for vertices and edges we have
- $O\left((2 s)^{O\left(m^{2}\right)}\right)$ labelings of the different graphs
-Counting the support means solving multiple NP-hard problems

An Example

An Example

An Example

Apriori-Based Graph Mining (AGM)

- Subgraph frequency follows downwards closedness property
- A supergraph cannot be frequent unless its subgraph is
- Idea: generate all k-vertex graphs that are supergraphs of $k-1$ vertex frequent graphs and check frequency
- Two problems:
-How to generate the graphs
-How to check the frequency
- Idea: do the generation based on adjacency matrices

Matrices and Codes

- In labelled adjacency matrix we have
- Vertex labels in the diagonal
-Edge labels in off-diagonal (or 0 if no edges)
- The code of the the adjacency matrix \boldsymbol{X} is the lowerleft triangular submatrix listed in row-major order $-x_{1,1} x_{2,1} x_{2,2} x_{3,1} \ldots x_{k, 1} \ldots x_{k, k} \ldots x_{n, n}$
- The adjacency matrices can be sorted using the standard lexicographical order in their codes

Joining Two Subgraphs

- Assume we have two frequent subgraphs of k vertices whose adjacency matrices agree on the first $k-1$ edges

$$
X_{k}=\left(\begin{array}{cc}
X_{k-1} & \boldsymbol{x}_{1} \\
\boldsymbol{x}_{2}^{T} & x_{k k}
\end{array}\right), Y_{k}=\left(\begin{array}{cc}
X_{k-1} & \boldsymbol{y}_{1} \\
\boldsymbol{y}_{2}^{T} & y_{k k}
\end{array}\right)
$$

- We can do the join as follows
$Z_{k+1}=\left(\begin{array}{ccc}X_{k-1} & \boldsymbol{x}_{1} & \boldsymbol{y}_{1} \\ \boldsymbol{x}_{2}^{T} & x_{k k} & z_{k, k+1} \\ \boldsymbol{y}_{2}^{T} & z_{k+1, k} & y_{k k}\end{array}\right)=\left(\begin{array}{cc|c}X_{k} & \boldsymbol{y}_{1} \\ \hline \boldsymbol{y}_{2}^{T} & z_{k+1, k} & y_{k k}\end{array}\right)$
$-z_{k+1, k}=z_{k, k+1}$ assumes all possible edge labels
- One matrix for each possibility

Avoiding Redundancy

- The two adjacency matrices are joined only if $\operatorname{code}\left(\boldsymbol{X}_{k}\right) \leq$ code $\left(\boldsymbol{Y}_{k}\right)$ ("normal order")
- We need to confirm that all subgraphs of the resulting (k +1)-vertex matrix are frequent
- We need to consider the normal-order generated k-vertex subgraphs
- The algorithm only stores normal-order generated graphs
- They are generated by re-generating the k-vertex subgraph from singletons in normal order
- Process is called normalization and can compute the normal forms of all subgraphs
- Normalization can be expressed as a row and column permutations: $\boldsymbol{X}_{n}=\boldsymbol{P}^{T} \boldsymbol{X P}$

Canonical Forms

- Isomorphic graphs can have many different normal forms
- Given a set $N F(G)$ of all normal forms representing graphs isomorphic to G, the canonical form of G is the adjacency matrix \boldsymbol{X}_{c} that has the minimum code in $N F(G)$

$$
\boldsymbol{X}_{c}=\arg \min \{\operatorname{code}(X): X \in N F(G)\}
$$

- Given an adjacency matrix \boldsymbol{X}, its normal form is $\boldsymbol{X}_{n}=\boldsymbol{P}^{T} \boldsymbol{X P}$ for some permutation matrix \boldsymbol{P}, and its canonical form \boldsymbol{X}_{c} is $\boldsymbol{Q}^{T} \boldsymbol{P}^{T} \boldsymbol{X} \boldsymbol{P} \boldsymbol{Q}$ for some permutation matrix \boldsymbol{Q}

Finding Canonical Forms

- Let \boldsymbol{X} be an adjacency matrix of $k+1$ vertices
- Let \boldsymbol{Y} be \boldsymbol{X} with vertex m removed
- Let \boldsymbol{P} be the permutation of \boldsymbol{Y} to its normal form and \boldsymbol{Q} the permutation of $\boldsymbol{P}^{T} \boldsymbol{Y P}$ to the canonical form
- We assume we have already computed them
- We compute candidate \boldsymbol{P}^{\prime} and \boldsymbol{Q}^{\prime} for \boldsymbol{X} by
- \boldsymbol{Q}^{\prime} is like \boldsymbol{Q} but bottom-right corner is 1
- $p^{\prime} i j$ is
$-p_{i j}$ if $i<m$ and $j \neq k$
$-p_{i-1, j}$ if $i>m$ and $j \neq k$
-1 if $i=m$ and $j=k$
-0 otherwise
- Final \boldsymbol{P}^{\prime} and \boldsymbol{Q}^{\prime} are found by trying all candidates and selecting the ones that give the lowest code

The Algorithm

- Start with frequent graphs of 1 vertex
- while there are frequent graphs left
- Join two frequent ($k-1$)-vertex graphs
- Check the resulting graphs subgraphs are frequent
- If not, continue
- Compute the canonical form of the graph
- If this canonical form has already been studied, continue
-Compare the canonical form with the canonical forms of the k-vertex subgraphs of the graphs in D
- If the graph is frequent, keep, otherwise discard
- return all frequent subgraphs

The gSpan Algorithm

- We can improve the running time of frequent subgraph mining by either
- Making the frequency check faster
- Lots of efforts in faster isomorphism checking but only little progress
- Creating less candidates that need to be checked
- Level-wise algorithms (like AGM) generate huge numbers of candidates
- Each must be checked with for isomorphism with others
- The gSpan (graph-based Substructure pattern mining) algorithm replaces the level-wise approach with a depth-first approach

Depth-First Spanning Tree

- A dept-first spanning (DFS) tree of a graph G
- Is a connected tree
- Contains all the vertices of G
- Is build in depth-first order
- Selection between the siblings is e.g. based on the vertex index
- Edges of the DFS tree are forward edges
- Edges not in the DFS tree are backward edges
- A rightmost path in the DFS tree is the path travels from the root to the rightmost vertex by always taking the rightmost child (last-added)

An Example

The DFS Tree

Generating Candidates from DFS Tree

- Given graph G, we extend it only from the vertices in the rightmost path
- We can add backwards edges from the rightmost vertex to some other vertex in the rightmost path
- We can add a forward edge from any vertex in the rightmost path
- This increases the number of vertices by 1
- The order of generating the candidates is
-First backward extensions
- First to root, then to root's child, ...
- Then forward extensions
- First from the leaf, then from leaf's father, ...

An Example

DFS Codes and their Orders

- A DFS code is a sequence of tuples of type $\left\langle v_{i}, v_{j}, L\left(v_{i}\right), L\left(v_{j}\right), L\left(v_{i}, v_{j}\right)\right\rangle$
- Tuples are given in DFS order
- Backwards edges are listed before forward edges
- A DFS code is canonical if it is the smallest of the codes in the ordering
$-\left\langle v_{i}, v_{j}, L\left(v_{i}\right), L\left(v_{j}\right), L\left(v_{i}, v_{j}\right)\right\rangle<\left\langle v_{x}, v_{y}, L\left(v_{x}\right), L\left(v_{y}\right), L\left(v_{x}, v_{y}\right)\right\rangle$ if
- $\left\langle v_{i}, v_{j}\right\rangle<_{e}\left\langle v_{x}, v_{y}\right\rangle$; or
- $\left\langle v_{i}, v_{j}\right\rangle=\left\langle v_{x}, v_{y}\right\rangle$ and $\left\langle L\left(v_{i}\right), L\left(v_{j}\right), L\left(v_{i}, v_{j}\right)\right\rangle<_{l}\left\langle L\left(v_{x}\right), L\left(v_{y}\right), L\left(v_{x}, v_{y}\right)\right\rangle$
-The ordering of the label tuples is the lexicographical ordering

Ordering the Edges

- Let $e_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ and $e_{x y}=\left\langle v_{x}, v_{y}\right\rangle$
- $e_{i j}<_{e} e_{x y}$ if
- If $e_{i j}$ and $e_{x y}$ are forward edges, then
$\cdot j<y$; or
$\cdot j=y$ and $i>x$
-If $e_{i j}$ and $e_{x y}$ are backward edges, then
- $i<x$; or
- $i=x$ and $j<y$
- If $e_{i j}$ is forward and $e_{x y}$ is backward, then $i<y$
-If $e_{i j}$ is backward and $e_{x y}$ is forward, then $j \leq x$

Example

$$
\begin{aligned}
t_{11} & =\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
t_{12} & =\left\langle v_{2}, v_{3}, a, a, r\right\rangle \\
t_{13} & =\left\langle v_{3}, v_{1}, a, a, r\right\rangle \\
t_{14} & =\left\langle v_{2}, v_{4}, a, b, r\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& t_{21}=\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
& t_{22}=\left\langle v_{2}, v_{3}, a, b, r\right\rangle \\
& t_{23}=\left\langle v_{2}, v_{4}, a, a, r\right\rangle \\
& t_{24}=\left\langle v_{4}, v_{1}, a, a, r\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
t_{31} & =\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
t_{32} & =\left\langle v_{2}, v_{3}, a, a, r\right\rangle \\
t_{33} & =\left\langle v_{3}, v_{1}, a, a, r\right\rangle \\
t_{34} & =\left\langle v_{1}, v_{4}, a, b, r\right\rangle
\end{aligned}
$$

Example

$\rightarrow \begin{aligned} t_{21} & =\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\ t_{22} & =\left\langle v_{2}, v_{3}, a, b, r\right\rangle \\ t_{23} & =\left\langle v_{2}, v_{4}, a, a, r\right\rangle \\ t_{24} & =\left\langle v_{4}, v_{1}, a, a, r\right\rangle\end{aligned}$

First rows are identical

Example

$$
\begin{aligned}
& t_{21}=\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
& t_{22}=\left\langle v_{2}, b, r\right\rangle \\
& t_{23}=\left\langle v_{2}, v_{4}, a, a, r\right\rangle \\
& t_{24}=\left\langle v_{4}, v_{1}, a, a, r\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
t_{11} & =\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
t_{12} & =\left\langle v_{2} a, r\right\rangle \\
t_{13} & =\left\langle v_{3}, v_{1}, a, a, r\right\rangle \\
t_{14} & =\left\langle v_{2}, v_{4}, a, b, r\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
t_{31} & =\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
t_{32} & =\left\langle v_{2}, v_{3}, a, a, r\right\rangle \\
t_{33} & =\left\langle v_{3}, v_{1}, a, a, r\right\rangle \\
t_{34} & =\left\langle v_{1}, v_{4}, a, b, r\right\rangle
\end{aligned}
$$

In second row, G_{2} is bigger in labels' order

Example

$$
\begin{aligned}
& t_{21}=\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
& t_{22}=\left\langle v_{2}, v_{3}, a, b, r\right\rangle \\
& t_{23}=\left\langle v_{2}, v_{4}, a, a, r\right\rangle \\
& t_{24}=\left\langle v_{4}, v_{1}, a, a, r\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& t_{11}=\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
& t_{12}=\left\langle v_{2}, v_{3}, a, a, r\right\rangle \\
& t_{13}=\left\langle v_{3}, v_{1}, a, a, r\right\rangle \\
& \rightarrow\left\langle v_{2}, v_{4}, a, b, r\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
t_{31} & =\left\langle v_{1}, v_{2}, a, a, q\right\rangle \\
t_{32} & =\left\langle v_{2}, v_{3}, a, a, r\right\rangle \\
t_{33} & =\left\langle v_{3}, v_{1}, a, a, r\right\rangle \\
t & \left\langle v_{1}, v_{4}, a, b, r\right\rangle
\end{aligned}
$$

Last rows are forward edges and $4=4$ but $2>1 \Rightarrow G_{1}$ is smallest

Building the Candidates

- The candidates are build in a DFS code tree
- A DFS code \mathbf{a} is an ancestor of DFS code \mathbf{b} if \mathbf{a} is a proper prefix of \mathbf{b}
- The siblings in the tree follow the DFS code order
- A graph can be frequent only if all of the graph representing its ancestors in the DFS tree are frequent
- The DFS tree contains all the canonical codes for all the subgraphs of the graphs in the data
- But not all of the vertices in the code tree correspond to canonical codes
- We will (implicitly) traverse this tree

The Algorithm

- gSpan:
-for each frequent 1-edge graphs
- call subgrm to grow all nodes in the code tree rooted in this 1-edge graph
- remove this edge from the graph
- subgrm
-if the code is not canonical, return
- Add this graph to the set of frequent graphs
- Create each super-graph with one more edge and compute its frequency
- call subgrm with each frequent super-graph

