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Definitions and Problems
• The data is a set of graphs D = {G1, G2, …, Gn}
–Directed or undirected

• The graphs Gi are labelled
–Each vertex v has a label L(v)
–Each edge e = (u, v) has a label L(u, v)

• Data can be e.g. molecule structures

3
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Graph Isomorphism
• Graphs G = (V, E) and G’ = (V’, E’) are isomorphic if 

there exists a bijective function φ: V → V’ such that
– (u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E’
– L(v) = L(φ(v)) for all v ∈ V
– L(u, v) = L(φ(u), φ(v)) for all (u, v) ∈ E

• Graph G’ is subgraph isomorphic to G if there exists 
a subgraph of G which is isomorphic to G’
• No polynomial-time algorithm is known for 

determining if G and G’ are isomorphic
• Determining if G’ is subgraph isomorphic to G is NP-

hard
4
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Equivalence and Canonical Graphs
• Isomorphism defines an equivalence class
– id: V → V, id(v) = v shows G is isomorphic to itself
– If G is isomorphic to G’ via φ, then G’ is isomorphic to G 

via φ–1

– If G is isomorphic to H via φ and H to I via χ, then G is 
isomorphic to I via φ○χ

• A canonization of a graph G, canon(G) produces 
another graph C such that if H is a graph that is 
isomorphic to G, canon(G) = canon(H)
–Two graphs are isomorphic if and only if their canonical 

versions are the same
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An Example of Isomorphic Graphs
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Frequent Subgraph Mining
• Given a set D of n graphs and a minimum support 

parameter minsup, find all connected graphs that are 
subgraph isomorphic to at least minsup graphs in D
–Enormously complex problem
– For graphs that have m vertices there are
•             subgraphs (not all are connected)

– If we have s labels for vertices and edges we have
•                          labelings of the different graphs

–Counting the support means solving multiple NP-hard 
problems
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Apriori-Based Graph Mining (AGM)

11

• Subgraph frequency follows downwards closedness 
property
–A supergraph cannot be frequent unless its subgraph is

• Idea: generate all k-vertex graphs that are supergraphs 
of k–1 vertex frequent graphs and check frequency
• Two problems:
–How to generate the graphs
–How to check the frequency

• Idea: do the generation based on adjacency matrices

Inokuchi, Washio & Motoda 2000
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Matrices and Codes
• In labelled adjacency matrix we have
–Vertex labels in the diagonal
–Edge labels in off-diagonal (or 0 if no edges)

• The code of the the adjacency matrix X is the lower-
left triangular submatrix listed in row-major order
– x1,1x2,1x2,2x3,1…xk,1…xk,k…xn,n

• The adjacency matrices can be sorted using the 
standard lexicographical order in their codes 

12
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Joining Two Subgraphs
• Assume we have two frequent subgraphs of k vertices 

whose adjacency matrices agree on the first k–1 edges

• We can do the join as follows

– zk+1,k = zk,k+1 assumes all possible edge labels
•One matrix for each possibility

13

An Apriori-Based Algorithm 17

elements of the matrices except for the elements of the k-th row and the k-th
column, then they are joined to generate Zk+1.

Xk =
(

Xk−1 x1
xT

2 xkk

)

, Yk =
(

Xk−1 y1
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2 ykk

)
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 =
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, (1)

where Xk−1 is the adjacency matrix representing the graph whose size is k−1, xi

and yi(i = 1, 2) are (k−1)×1 column vectors. Xk is called the “first matrix” and
Yk the “second matrix”. The following relations hold among the vertex-sorted
adjacency matrices Xk, Yk and Zk+1.

lb(vi; vi ∈ V (G(Xk)) = lb(vi; vi ∈ V (G(Yk)) = lb(vi; vi ∈ V (G(Zk+1))),

lb(vi; vi ∈ V (G(Xk)) ≤ lb(vi+1; vi+1 ∈ V (G(Xk)),

lb(vk; vk ∈ V (G(Xk)) = lb(vk; vk ∈ V (G(Zk+1)), (2)

lb(vk; vk ∈ V (G(Yk)) = lb(vk+1; vk+1 ∈ V (G(Zk+1)),

lb(vk; vk ∈ V (G(Xk)) ≤ lb(vk; vk ∈ V (G(Yk)).

Here, i = 1, · · · , k − 1. zk,k+1 and zk+1,k are not determined by Xk and Yk.
Each can take every integer value num(lb) corresponding to each edge label lb
or 0 corresponding to the case that no edge exists between vk and vk+1. In case
of an undirected graph, zk,k+1 and zk+1,k must have an identical value. This
join procedure of Xk and Yk creates multiple Zk+1s for all possible value pairs of
zk,k+1 and zk+1,k. Note that when the labels of the k-th vertices vk of G(Xk) and
G(Yk) are the same, exchanging Xk and Yk (i.e., taking Yk as the first matrix
and Xk as the second matrix), produces redundant adjacent matrices. In order
to avoid this redundant generation, the two adjacency matrices are joined only
when Eq.(3) is satisfied. The vertex-sorted adjacency matrix generated under
this condition is called a “normal form”.

code(the first matrix) ≤ code(the second matrix) (3)

In the standard basket analysis, the (k + 1)-itemset becomes a candidate
frequent itemset only when all the k-sub-itemsets are confirmed to be frequent
itemsets. Similarly, the graph G of size k + 1 is a candidate of frequent induced
subgraphs only when all adjacency matrices generated by removing from the
graph G the i-th vertex vi (1 ≤ i ≤ k + 1) and all its connected links are confir-
med to be frequent induced subgraphs of the size k. As this algorithm generates
only adjacency matrices of the normal form in the earlier (smaller) k-levels, if
the adjacency matrix of the graph generated by removing the i-th vertex vi is
non-normal form, it must be transformed to a normal form to check if it mat-
ches one of the normal form matrices found earlier. An adjacency matrix Xk of
a non-normal form is transformed into a normal form X ′

k by reconstructing the
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Avoiding Redundancy
• The two adjacency matrices are joined only if code(Xk) ≤ 

code(Yk) (“normal order”)
• We need to confirm that all subgraphs of the resulting (k

+1)-vertex matrix are frequent
–We need to consider the normal-order generated k-vertex 

subgraphs
• The algorithm only stores normal-order generated graphs 

– They are generated by re-generating the k-vertex subgraph from 
singletons in normal order
• Process is called normalization and can compute the normal forms of 

all subgraphs
– Normalization can be expressed as a row and column 

permutations: Xn = PTXP 

14
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Canonical Forms
• Isomorphic graphs can have many different normal 

forms
• Given a set NF(G) of all normal forms representing 

graphs isomorphic to G, the canonical form of G is 
the adjacency matrix Xc that has the minimum code in 
NF(G)
  Xc = arg min {code(X) : X ∈ NF(G)}
• Given an adjacency matrix X, its normal form is 
Xn = PTXP for some permutation matrix P, and its 
canonical form Xc is QTPTXPQ for some permutation 
matrix Q 

15
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Finding Canonical Forms
• Let X be an adjacency matrix of k+1 vertices
– Let Y be X with vertex m removed
– Let P be the permutation of Y to its normal form and Q the 

permutation of PTYP to the canonical form
•We assume we have already computed them

–We compute candidate P’ and Q’ for X by
• Q’ is like Q but bottom-right corner is 1
• p’ij is 
–pij if i < m and j ≠ k
–pi–1,j if i > m and j ≠ k
–1 if i = m and j = k
–0 otherwise

– Final P’ and Q’ are found by trying all candidates and selecting 
the ones that give the lowest code 

16



DTDM, WS 12/13 T II.1-20 November 2012

The Algorithm
• Start with frequent graphs of 1 vertex
• while there are frequent graphs left
– Join two frequent (k–1)-vertex graphs
–Check the resulting graphs subgraphs are frequent
• If not, continue

–Compute the canonical form of the graph
• If this canonical form has already been studied, continue

–Compare the canonical form with the canonical forms of the 
k-vertex subgraphs of the graphs in D
• If the graph is frequent, keep, otherwise discard 

• return all frequent subgraphs

17
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The gSpan Algorithm
• We can improve the running time of frequent 

subgraph mining by either
–Making the frequency check faster
•Lots of efforts in faster isomorphism checking but only little 

progress
–Creating less candidates that need to be checked
•Level-wise algorithms (like AGM) generate huge numbers of 

candidates
•Each must be checked with for isomorphism with others

• The gSpan (graph-based Substructure pattern mining) 
algorithm replaces the level-wise approach with a 
depth-first approach

18

Yan & Han 2002; Z&M Ch. 11
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Depth-First Spanning Tree
• A dept-first spanning (DFS) tree of a graph G
– Is a connected tree
–Contains all the vertices of G
– Is build in depth-first order
• Selection between the siblings is e.g. based on the vertex index

• Edges of the DFS tree are forward edges 
• Edges not in the DFS tree are backward edges
• A rightmost path in the DFS tree is the path travels 

from the root to the rightmost vertex by always taking 
the rightmost child (last-added)

19
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The DFS Tree

21
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Generating Candidates from DFS Tree

22

• Given graph G, we extend it only from the vertices in 
the rightmost path
–We can add backwards edges from the rightmost vertex to 

some other vertex in the rightmost path
–We can add a forward edge from any vertex in the rightmost 

path
•This increases the number of vertices by 1

• The order of generating the candidates is
– First backward extensions
• First to root, then to root’s child, …

–Then forward extensions
• First from the leaf, then from leaf’s father, …
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DFS Codes and their Orders

24

• A DFS code is a sequence of tuples of type 
⟨vi, vj, L(vi), L(vj), L(vi,vj)⟩
–Tuples are given in DFS order
•Backwards edges are listed before forward edges

• A DFS code is canonical if it is the smallest of the 
codes in the ordering
– ⟨vi, vj, L(vi), L(vj), L(vi,vj)⟩ < ⟨vx, vy, L(vx), L(vy), L(vx,vy)⟩ if
• ⟨vi, vj⟩ <e ⟨vx, vy⟩; or
• ⟨vi, vj⟩=⟨vx, vy⟩ and ⟨L(vi), L(vj), L(vi, vj)⟩ <l ⟨L(vx), L(vy), L(vx, vy)⟩

–The ordering of the label tuples is the lexicographical 
ordering
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Ordering the Edges
• Let eij = ⟨vi, vj⟩ and exy = ⟨vx, vy⟩

• eij <e exy if
– If eij and exy are forward edges, then 
• j < y; or 
• j = y and i > x

– If eij and exy are backward edges, then 
• i < x; or 
• i = x and j < y

– If eij is forward and exy is backward, then i < y
– If eij is backward and exy is forward, then j ≤ x

25
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CHAPTER 11. GRAPH PATTERN MINING 286
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t11 = 〈v1, v2, a, a, q〉
t12 = 〈v2, v3, a, a, r〉
t13 = 〈v3, v1, a, a, r〉
t14 = 〈v2, v4, a, b, r〉

t21 = 〈v1, v2, a, a, q〉
t22 = 〈v2, v3, a, b, r〉
t23 = 〈v2, v4, a, a, r〉
t24 = 〈v4, v1, a, a, r〉

t31 = 〈v1, v2, a, a, q〉
t32 = 〈v2, v3, a, a, r〉
t33 = 〈v3, v1, a, a, r〉
t34 = 〈v1, v4, a, b, r〉

Figure 11.6: Canonical DFS Code. G1 is canonical, whereas G2 and G3 are non-
canonical. Vertex label set ΣV = {a, b}, and edge label set ΣE = {q, r}.

Here <e is an ordering on the edges and <l is an ordering on the vertex and edge
labels. The label order <l is the standard lexicographic order on the vertex and edge
labels. For example the label tuple 〈a, a, r〉 <l 〈a, b, q〉 since if we compare the two
tuples in an element-wise manner, we find that L(vj) = a < b = L(vy).

The edge order <e is more involved. Let eij = 〈vi, vj〉 and exy = 〈vx, vy〉. We
write eij <e exy if the following conditions are met:

i) If eij and exy are both forward edges, then a) j < y or, b) j = y and i > x.

ii) If eij and exy are both backward edges, then a) i < x or b) i = x and j < y.

iii) If eij is a forward and exy is a backward edge, then i < y.

iv) If eij is a backward and exy is a forward edge, then j ≤ x.

Given the DFS codes for any two graphs, we can compare them tuple by tuple
to check which is smaller.

Example 11.2: For example, consider the DFS codes for the three graphs shown
in Figure 11.6. Comparing G1 and G2, we find that t11 = t21, but t12 < t22, since
〈a, a, r〉 <l 〈a, b, r〉. Comparing G1 with G3, we find that the first three tuples
are equal in both graphs, but t14 < t34, since 〈v2, v4〉 <e 〈v1, v4〉. Applying the
rules for edge ordering <e, we find that condition i) applies, and vj = v4 = vy but

DRAFT @ 2012-09-19 21:46. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other
standard distribution channels, that no unauthorized distribution shall be allowed, and that the
reader may make one copy only for personal on-screen use.
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iv) If eij is a backward and exy is a forward edge, then j ≤ x.

Given the DFS codes for any two graphs, we can compare them tuple by tuple
to check which is smaller.

Example 11.2: For example, consider the DFS codes for the three graphs shown
in Figure 11.6. Comparing G1 and G2, we find that t11 = t21, but t12 < t22, since
〈a, a, r〉 <l 〈a, b, r〉. Comparing G1 with G3, we find that the first three tuples
are equal in both graphs, but t14 < t34, since 〈v2, v4〉 <e 〈v1, v4〉. Applying the
rules for edge ordering <e, we find that condition i) applies, and vj = v4 = vy but
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First rows are identical
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t11 = 〈v1, v2, a, a, q〉
t12 = 〈v2, v3, a, a, r〉
t13 = 〈v3, v1, a, a, r〉
t14 = 〈v2, v4, a, b, r〉

t21 = 〈v1, v2, a, a, q〉
t22 = 〈v2, v3, a, b, r〉
t23 = 〈v2, v4, a, a, r〉
t24 = 〈v4, v1, a, a, r〉

t31 = 〈v1, v2, a, a, q〉
t32 = 〈v2, v3, a, a, r〉
t33 = 〈v3, v1, a, a, r〉
t34 = 〈v1, v4, a, b, r〉

Figure 11.6: Canonical DFS Code. G1 is canonical, whereas G2 and G3 are non-
canonical. Vertex label set ΣV = {a, b}, and edge label set ΣE = {q, r}.

Here <e is an ordering on the edges and <l is an ordering on the vertex and edge
labels. The label order <l is the standard lexicographic order on the vertex and edge
labels. For example the label tuple 〈a, a, r〉 <l 〈a, b, q〉 since if we compare the two
tuples in an element-wise manner, we find that L(vj) = a < b = L(vy).

The edge order <e is more involved. Let eij = 〈vi, vj〉 and exy = 〈vx, vy〉. We
write eij <e exy if the following conditions are met:

i) If eij and exy are both forward edges, then a) j < y or, b) j = y and i > x.

ii) If eij and exy are both backward edges, then a) i < x or b) i = x and j < y.

iii) If eij is a forward and exy is a backward edge, then i < y.

iv) If eij is a backward and exy is a forward edge, then j ≤ x.

Given the DFS codes for any two graphs, we can compare them tuple by tuple
to check which is smaller.

Example 11.2: For example, consider the DFS codes for the three graphs shown
in Figure 11.6. Comparing G1 and G2, we find that t11 = t21, but t12 < t22, since
〈a, a, r〉 <l 〈a, b, r〉. Comparing G1 with G3, we find that the first three tuples
are equal in both graphs, but t14 < t34, since 〈v2, v4〉 <e 〈v1, v4〉. Applying the
rules for edge ordering <e, we find that condition i) applies, and vj = v4 = vy but
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In second row, G2 is bigger in labels’ order
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t13 = 〈v3, v1, a, a, r〉
t14 = 〈v2, v4, a, b, r〉

t21 = 〈v1, v2, a, a, q〉
t22 = 〈v2, v3, a, b, r〉
t23 = 〈v2, v4, a, a, r〉
t24 = 〈v4, v1, a, a, r〉

t31 = 〈v1, v2, a, a, q〉
t32 = 〈v2, v3, a, a, r〉
t33 = 〈v3, v1, a, a, r〉
t34 = 〈v1, v4, a, b, r〉

Figure 11.6: Canonical DFS Code. G1 is canonical, whereas G2 and G3 are non-
canonical. Vertex label set ΣV = {a, b}, and edge label set ΣE = {q, r}.

Here <e is an ordering on the edges and <l is an ordering on the vertex and edge
labels. The label order <l is the standard lexicographic order on the vertex and edge
labels. For example the label tuple 〈a, a, r〉 <l 〈a, b, q〉 since if we compare the two
tuples in an element-wise manner, we find that L(vj) = a < b = L(vy).

The edge order <e is more involved. Let eij = 〈vi, vj〉 and exy = 〈vx, vy〉. We
write eij <e exy if the following conditions are met:

i) If eij and exy are both forward edges, then a) j < y or, b) j = y and i > x.

ii) If eij and exy are both backward edges, then a) i < x or b) i = x and j < y.

iii) If eij is a forward and exy is a backward edge, then i < y.

iv) If eij is a backward and exy is a forward edge, then j ≤ x.

Given the DFS codes for any two graphs, we can compare them tuple by tuple
to check which is smaller.

Example 11.2: For example, consider the DFS codes for the three graphs shown
in Figure 11.6. Comparing G1 and G2, we find that t11 = t21, but t12 < t22, since
〈a, a, r〉 <l 〈a, b, r〉. Comparing G1 with G3, we find that the first three tuples
are equal in both graphs, but t14 < t34, since 〈v2, v4〉 <e 〈v1, v4〉. Applying the
rules for edge ordering <e, we find that condition i) applies, and vj = v4 = vy but
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Last rows are forward edges and 4 = 4 but 2 > 1 ⇒ G1 is smallest
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• The candidates are build in a DFS code tree
–A DFS code a is an ancestor of DFS code b if a is a proper 

prefix of b
–The siblings in the tree follow the DFS code order

• A graph can be frequent only if all of the graph 
representing its ancestors in the DFS tree are frequent
• The DFS tree contains all the canonical codes for all 

the subgraphs of the graphs in the data
–But not all of the vertices in the code tree correspond to 

canonical codes
• We will (implicitly) traverse this tree
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The Algorithm
• gSpan:
– for each frequent 1-edge graphs
•call subgrm to grow all nodes in the code tree rooted in 
this 1-edge graph
• remove this edge from the graph

• subgrm
– if the code is not canonical, return
–Add this graph to the set of frequent graphs
–Create each super-graph with one more edge and compute 

its frequency
– call subgrm with each frequent super-graph

28


