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Why Graphs?
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Graphs are Everywhere!
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Graphs: Definitions
• An undirected graph G is a pair (V, E)
–V = {vi} is the set of vertices
–E = {ei = {vi, vj} : vi, vj ∈ V} is the set of edges

• In directed graph the edges have a direction
–E = {ei = (vi, vj) : vi, vj ∈ V}

• And edge from a vertex to itself is loop 
–A graph that does not have loops is simple

• The degree of a vertex v, d(v), is the number of edges 
attached to it, d(v) = |{{v, u} ∈ E : u ∈ V}|
– In directed graphs vertices have in-degree id(v) and out-

degree od(v)
4
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Subgraphs
• A graph H = (VH, EH) is a subgraph of G = (V, E) if
–VH ⊆ V
–EH ⊆ E
–The edges in EH are between vertices in VH

• If V’ ⊆ V is a set of vertices, then G’ = (V’, E’) is the 
induced subgraph if
–  For all vi, vj ∈ V’ such that {vi, vj} ∈ E, {vi, vj} ∈ E’

• Subgraph K = (VK, EK) of G is a clique if
– For all vi, vj ∈ VK, {vi, vj} ∈ EK

–Cliques are also called complete subgraphs

5



DTDM, WS 12/13 T II.Intro-13 November 2012

Bipartite Graphs
• A graph G = (V, E) is bipartite if V can be partitioned 

into two sets U and W such that
–U ∩ W = ∅ and U ∪ W = V (a partition)
– For all {vi, vj} ∈ E, vi ∈ U and vj ∈ W
•No edges within U and no edges within W

• Any subgraph of a bipartite graph is also bipartite
• A biclique is a complete bipartite subgraph 

K = (U ∪ V, E)
– For all u ∈ U and v ∈ V, edge {u, v} ∈ E

6
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Paths and Distances
• A walk in graph G between vertices x and y is an ordered 

sequence ⟨x = v0, v1, v2, …, vt–1, vt = y⟩

– {vi–1, vi} ∈ E for all i = 1, …, t
– If x = y, the walk is closed
– The same vertex can re-appear in the walk many times

• A trail is a walk where edges are distinct
– {vi–1, vi} ≠ {vj–1, vj} for i ≠ j

• A path is a walk where vertices are distinct
– vi ≠ vj for i ≠ j
– A closed path with t ≥ 3 is a cycle

• The distance between x and y, d(x, y) is the length of the 
shortest path between them

7
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Connectedness
• Two vertices x and y are connected if there is a path 

between them
–A graph is connected if all pairs of its vertices are connected

• A connected component of a graph is a maximal 
connected subgraph
• A directed graph is strongly connected if there is a 

directed path between all ordered pairs of its vertices
– It is weakly connected if it is connected only when 

considered as an undirected graph
• If a graph is not connected, it is disconnected 

8
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Example
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CHAPTER 4. GRAPH DATA 97

may be repeated. A walk starting and ending at the same vertex (i.e., with y = x)
is called closed. A trail is a walk with distinct edges, and a path is a walk with
distinct vertices (with the exception of the start and end vertices). A closed path
with length t ≥ 3 is called a cycle, i.e., a cycle begins and ends at the same vertex,
and has distinct nodes.

A path of minimum length between nodes x and y is called a shortest path, and
the length of the shortest path is called the distance between x and y, denoted as
d(x, y). If no path exists between the two nodes, the distance is assumed to be
d(x, y) =∞.

Connectedness Two nodes vi and vj are said to be connected if there exists a
path between them. A graph is connected if there is a path between all pairs of
vertices. A connected component, or just component, of a graph is a maximal con-
nected subgraph. If a graph has only one component it is connected, otherwise it
is disconnected, since by definition there cannot be a path between two different
components.

For a directed graph, we say that it is strongly connected if there is a (directed)
path between all ordered pairs of vertices. We say that it is weakly connected if there
exists a path between node pairs only by considering edges as undirected.

v1 v2

v3 v4 v5 v6

v7 v8
(a)

v1 v2

v3 v4 v5 v6

v7 v8
(b)

Figure 4.1: (a) A graph (undirected), (b) A directed graph

Example 4.1: Figure 4.1a shows a graph with 8 vertices and 11 edges. Since
(v1, v5) ∈ E, we say that v1 and v5 are adjacent. The degree of v1 is d(v1) = 4.
The degree sequence of the graph is given as

(4, 4, 4, 3, 2, 2, 2, 1)

The degree frequency distribution of the graph is given as

(0, 1, 3, 1, 3)

DRAFT @ 2012-09-19 21:46. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other
standard distribution channels, that no unauthorized distribution shall be allowed, and that the
reader may make one copy only for personal on-screen use.
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Adjacency Matrix
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• The adjacency matrix of an undirected graph 
G = (V, E) with |V| = n is the n-by-n symmetric binary 
matrix A with
– aij = 1 if and only if {vi, vj} ∈ E 
–A weighted adjacency matrix has the weights of the edges

• For directed graphs, the adjacency matrix is not 
necessarily symmetric
• The bi-adjacency matrix of a bipartite graph 

G = (U ∪ V, E) with |U| = n and |V| = m is the n-by-m 
binary matrix B with
– bij = 1 if and only if {ui, vj} ∈ E
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Topological Attributes
• The weighted degree of a vertex vi is d(vi) = ∑j aij  
• The average degree of a graph is the average of the 

degrees of its vertices, Σi d(vi)/n
–Degree and average degree can be extended to directed 

graphs
• The average path length of a connected graph is the 

average of path lengths between all vertices

11
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Eccentricity, Radius & Diameter
• The eccentricity of a vertex vi, e(vi), is its maximum 

distance to any other vertex, maxj{d(vi, vj)}
• The radius of a connected graph, r(G), is the 

minimum eccentricity of any vertex, mini{e(vi)}
• The diameter of a connected graph, d(G), is the 

maximum eccentricity of any vertex, 
maxi{e(vi)} = maxi,j{d(vi, vj)}
–The effective diameter of a graph is smallest number that is 

larger than the eccentricity of a large fraction of the vertices 
in the graph
• “Large fraction” e.g. 90%

12



DTDM, WS 12/13 T II.Intro-13 November 2012

Clustering Coefficient
• The clustering coefficient of vertex vi, C(vi), tells 

how clique-like the neighbourhood of vi is
–Let ni be the number of neighbours of vi and mi the number 

of edges between the neighbours of vi (vi excluded)

–Well-defined only for vi with at least two neighbours
• For others, let C(vi) = 0

• The clustering coefficient of the graph is the average 
clustering coefficient of the vertices: 
C(G) = n–1ΣiC(vi)

13
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Graph Mining
• Graphs can explain relations between objects
• Finding these relations is the task of graph mining
–The type of the relation depends on the task

• Graph mining is an umbrella term that encompasses 
many different techniques and problems
– Frequent subgraph mining
–Graph clustering
– Path analysis/building
– Influence propagation
–…

14
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Example: Tiling Databases
• Binary matrices define a 

bipartite graph
• A tile is a biclique of that 

graph
• Tiling is the task of finding 

a minimum number of 
bicliques to cover all edges 
of a bipartite graph 
–Or to find k bicliques to cover 

most of the edges

15
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Example: The Characteristics of Erdős 
Graph
• Co-authorship graph of mathematicians
• 401K authors (vertices), 676K co-authorships (edges)
–Median degree = 1, mean = 3.36, standard deviation = 6.61

• Large connected component of 268K vertices
– The radius of the component is 12 and diameter 23
– Two vertices with eccentricity 12
–Average distance between two vertices 7.64 (based on a sample)
• “Eight degrees of separation”

• The clustering coefficient is 0.14

16
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Centrality
• Six degrees of Kevin Bacon
– ”Every actor is related to Kevin 

Bacon by no more than 6 hops”
–Kevin Bacon has acted with many,

that have acted with many others,
that have acted with many others…

• That makes Kevin Bacon a
centre of the co-acting graph
–Although he’s not the centre: the

average distance to him is 2.994
but to Dennis Hopper it is only
2.802

17
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Degree and Eccentricity Centrality
• Centrality is a function c: V → ℝ that induces a total 

order in V
–The higher the centrality of a vertex, the more important it 

is
• In degree centrality c(vi) = d(vi), the degree of the 

vertex
• In eccentricity centrality the least eccentric vertex is 

the most central one, c(vi) = 1/e(vi)
–The lest eccentric vertex is central 
–The most eccentric vertex is peripheral

18
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Closeness Centrality
• In closeness centrality the vertex with least distance 

to all other vertices is the centre

• In eccentricity centrality we aim to minimize the 
maximum distance
• In closeness centrality we aim to minimize the 

average distance
–This is the distance used to measure the centre of 

Hollywood

19
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Betweenness Centrality
• The betweenness centrality measures the number of 

shortest paths that travel through vi

–Measures the “monitoring” role of the vertex
– “All roads lead to Rome”

• Let ηjk be the number of shortest paths between vj and 
vk and let ηjk(vi) be the number of those that include vi

–Let γjk(vi) = ηjk(vi)/ηjk

–Betweenness centrality is defined as  

20
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Prestige
• In prestige, the vertex is more central if it has many 

incoming edges from other vertices of high prestige
–A is the adjacency matrix of the directed graph G 
– p is n-dimensional vector giving the prestige of the vertices
– p = ATp
– Starting from an initial prestige vector p0, we get

pk = ATpk–1 = AT(ATpk–2) = (AT)2pk–2 = (AT)3pk–3 = … 
    = (AT)kp0

• Vector p converges to the dominant eigenvector of AT

–Under some assumptions

21
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PageRank
• PageRank uses normalized prestige to rank web pages
• If there is a vertex with no out-going edges, the 

prestige cannot be computed
– PageRank evades this problem by adding a small 

probability of a random jump to another vertex
–Random Surfer model

• Computing the PageRank is equivalent to computing 
the stationary distribution of a certain Markov chain
–Which is again equivalent to computing the dominant 

eigenvector

22
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Graph Properties
• Several real-world graphs exhibit certain 

characteristics
– Studying what these are and explaining why they appear is 

an important area of network research
• As data miners, we need to understand the 

consequences of these characteristics
– Finding a result that can be explained merely by one of 

these characteristics is not interesting
• We also want to model graphs with these 

characteristics

23
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Small-World Property
• A graph G is said to exhibit a small-world property 

if its average path length scales logarithmically,
µL ∝ log n
–The six degrees of Kevin Bacon is based on this property
–Also the Erdős number
•How far a mathematician is from Hungarian combinatorist Paul 

Erdős
•A radius of a large, connected mathematical co-authorship 

network (268K authors) is 12 and diameter 23

24
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Scale-Free Property
• The degree distribution of a graph is the distribution 

of its vertex degrees 
–How many vertices with degree 1, how many with degree 2, 

etc.
– f(k) is the number of edges with degree k

• A graph is said to exhibit scale-free property if 
f(k) ∝ k–γ

– So-called power-law distribution
–Majority of vertices have small degrees, few have very high 

degrees
– Scale-free: f(ck) = α(ck)–γ = (αc–γ)k–γ ∝ k–γ

25
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Example: WWW Links

26

IRDM  WS 2007 5-6

Web Structure: Power-Law Degrees
(Scale-Free Network)

• power-law distributed degrees: P[degree=k] ~ (1/k)�
with � � 2.1 for indegrees and � � 2.7 for outdegrees

Study of Web Graph (Broder et al. 2000)

Broder et al. Graph structure in the web. WWW’00

s = 2.09 s = 2.72

In-degree Out-degree
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Clustering Effect
• A graph exhibits clustering effect if the distribution 

of average clustering coefficient (per degree) follow 
the power law
– If C(k) is the average clustering coefficient of all vertices of 

degree k, then C(k) ∝ k–γ

• The vertices with small degrees are part of highly 
clustered areas (high clustering coefficient) while 
“hub vertices” have smaller clustering coefficients

27
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Random Graph Models
• Begin able to generate random graphs that exhibit 

these properties is very useful
–They tell us something how such graphs have come to be
–They let us study what we find in an “average” graph
–With some graph models, we can also make analytical 

studies of the properties
•What to expect

28
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Erdős–Rényi Graphs
• Two parameters: number of vertices n and number of 

edges m
• Samples uniformly from all such graphs
– Sample m edges u.a.r. without replacement

• Average degree is 2m/n
• Degree distribution follows Poisson, not power law
• Clustering coefficient is uniform
• Exhibits small-world property

29
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Watts–Strogatz Graphs
• Aims for high local clustering
• Starts with vertices in a ring, each connected to k 

neighbours left and right
• Adds random perturbations
–Edge rewiring: move the end-point of random edges to 

random vertices
–Edge shortcuts: add random edges between vertices

• Not scale-free
• High clustering coefficient for small amounts of 

perturbations
• Small diameter with some amount of perturbations

30
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Example

31
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Figure 4.12: Watts-Strogatz Graph (n = 20, k = 3): Shortcut edges are shown
dotted

probability r = 1, the regular structure is disrupted, and the graph approaches a
random graph, with little to no clustering effect, but with small-world property.
Surprisingly, introducing only a small amount of randomness leads to a significant
change in the regular network. As one can see in Figure 4.12, the presence of a
few long-range shortcuts reduces the diameter of the network significantly. That is,
even for a low value of r, the WS model retains most of the regular local clustering
structure, but at the same time becomes small-world.

Properties of Watts-Strogatz Graphs

Degree Distribution Let us consider the shortcut approach, which is easier to
analyze. In this approach, each vertex has degree at least 2k. In addition there
are the shortcut edges, that follow a Binomial distribution. Each node can have
n′ = n−2k−1 additional shortcut edges, so we take n′ as the number of independent
trials to add edges. Since a node has degree 2k, with shortcut edge probability of
r, we expect roughly 2kr shortcuts from that node, but the node can connect to at
most n− 2k − 1 other nodes. Thus we can take the probability of success as

p =
2kr

n− 2k − 1
=

2kr

n′ (4.45)

DRAFT @ 2012-09-19 21:46. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other
standard distribution channels, that no unauthorized distribution shall be allowed, and that the
reader may make one copy only for personal on-screen use.
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Barabási–Albert Graphs
• Mimics dynamic evolution of graphs
– Preferential attachment

• Starts with a regular graph
• At each time step, adds a new vertex u
– From u, adds q edges to other vertices
–Vertices are sampled proportional to their degree
•High degree, high probability to get more edges

• Degree distribution follows power law (with γ = 3)
• Ultra-small world behaviour
• Very small clustering coefficient

32


