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Closed Itemsets on Tensors
• Closed itemsets on a binary matrix:
–Combinatorial submatrix 
–All elements are 1
–Adding any column would mean we would have to remove 

row(s) to satisfy the above requirements
•And same holds for adding a row

• Closed itemsets on a binary (3-way) tensor:
–Combinatorial subtensor
–All elements are 1
–Adding any fibre (on any mode) would mean we would have 

to remove fibre(s) from other modes to satisfy the above 
requirements
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Some Constraints
• Mode-wise minimum size
– Similar to standard minimum frequency
–Monotonic for each mode

• Minimum volume
– Similar to above (but not equivalent)
–Monotonic for each mode

• δ-isolated
–The fraction of 1s in any mode-i fibre passing thru the sub-

tensor that are outside it must be more than δ
• δ = 1 ⇒ all 1s in all fibres must be in the sub-tensor
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3D Market Baskets?
• Why mine closed subtensors?
• Market basket data
–Customers-by-products-by-shops
•Good for large chains with different types of shops

• Anything-by-anything-by-time
–Though looses the temporal autocorrelation

• Source IP-by-destination IP-by-destination port
–Network data analysis

• …
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Finding the Closed n-Way Itemsets
• Similar to traditional closed itemset mining, we want 

to find all itemsets satisfying our constraints
–There are 2I+J+K possible sets in I-by-J-by-K tensor
–We hope we can prune the search space…

• The algorithm we’re going to discuss is called Data-
Peeler 
• We represent our search space as a tree
–Root represents all possible n-way itemsets
–The leaves are the closed n-way itemsets
–This tree we want to prune
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The Enumeration Tree
• Every node contains two collections of index sets,

 U and V
– Index sets define subtensors

• Every node represents all subtensors that contain U and 
are contained in U ∪ V
– The union is over the index sets
– The root has empty U
– The leaves have empty V

• It is possible that these
tensors are reduced
– Some modes are 

0-dimensional
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Building the Tree
• At every node (U, V), select a dimension in a mode in 

V and remove it from V
• Create two childs
– Left: Add that dimension in the correct mode in U 
–Right: Don’t add

• For the left child, we can remove all those elements of 
V that cannot be added to the sub-tensor to and keep it 
all-1s
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An Example
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U = {{1}, {1}, {1}}
 V = {{2, 3}, {2}, {2, 3}}

U = {{1}, {1}, {1, 2}}
 V = {{2}, {2}, {3}}

U = {{1}, {1}, {1}}
 V = {{2, 3}, {2}, {3}}

– If U was {{1},{1},{1}} and V was {{2, 3}, {2}, {2, 3}} 
and we moved 2 from the 3rd mode to U and (3, 1, 2) is 
a 0-element, the new V will be {{2}, {2}, {3}}

Move 2 from
3rd mode to U

Discard 2 from
3rd mode
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Checking for the Closedness
• We can check for the closedness during the 

enumeration
• If there exists a 1 in the tensor that is not in U ∪ V but 

which could be added to U ∪ V without breaking the 
all-1s property, then no child of this node will be 
closed
–The node can be pruned, the closure will appear in other 

part of the tree
–We don’t need to try all 1s not in U ∪ V, just those 

corresponding to the dimension removed in the ancestors of 
this node that themselves were right childs
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An Example
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U = {{1}, {1}, {1}}
 V = {{2, 3}, {2}, {2, 3}}

U = {{1}, {1}, {1, 2}}
 V = {{2}, {2}, {3}}

U = {{1}, {1}, {1}}
 V = {{2, 3}, {2}, {3}}

U = {{1}, {1}, {1}}
 V = {{2}, {2}, {3}}If {{1,2}, {1,2}, {1,2,3}} is full-1s 

subtensor, this node cannot yield to 
closed itemsets

drop 2 from 3rd mode

drop 3 from 
1st mode
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Handling other constraints
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• If other constraints have been issued, we can stop 
traversing the branch if none of the subtensors 
represented by the node satisfies the constraints
–We can get the maximum sizes of modes from U ∪ V
–And the minimum sizes from U

• For example, for minimum size constraints, we stop if 
the size fo U ∪ V drops below the constraint
– Similar for minimum volume
– For δ-isolation, we can consider the fraction of 1s that are 

outside U w.r.t. the number of 1s that are inside U ∪ V
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Final Notes on Data-Peeler
• The (greedy) strategy selecting the element to remove 

from V is crucial for fast execution
• Space complexity is ∏i Ii for I1-by-I2-by…-by-In 

tensor
–A dense representation, won’t work with huge-but-sparse 

tensors
–The biggest data set used in the paper is 323-by-323-by-39-

by-6
• 24.4M elements
• 602K closed itemsets
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Tiling Tensors
• Tiling tensors is analogous to tiling matrices
• Similarly, we can use the closed n-way itemsets as 

building blocks for the tiling
–Reduces to the set cover problem—again

• A tiling gives us a Boolean CP decomposition of the 
tensor
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Matrix Tiling as Decomposition
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• Each tile is a rank-1 submatrix
–Outer product of two binary vectors

• If we sum two tiles, we get a
non-binary matrix
– Instead of sum, we can take the

element-wise maximum
–This is known as the Boolean

matrix product 

• Minimum tiling is finding the Boolean decomposition 
with minimum inner dimension

(A�B)i j =
k_

i=1
aikbk j
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Tensor Tiling as CP Decomposition
• Analogously for tensors
–A tile is a rank-1 tensor
–Tiling is a Boolean sum of rank-1 tensors
–Minimum tiling is about finding the smallest number of 

rank-1 tensors to exactly express the original tensor
•Boolean tensor rank!
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Boolean Tensor Decompositions
• We can transform both CP and Tucker decomposition 

into Boolean versions
–Original tensors are required to be binary
–All factors (and core tensor) are required to be binary
–The summation is replaced by logical OR
–The error measure is the Hamming distance between the 

original tensor and its decomposed representation
•Equals to sums-of-squares of element-wise differences
•Note: in (combinatorial) tiling, we don’t allow “holes” in the tiles

—this is more general
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A Bit About Boolean Matrix Factorizations
• Boolean matrix factorization (BMF) differs from 

normal factorizations in significant parts
–Rank-1 Boolean matrices are rank-1 normal matrices
–The Boolean rank of a matrix is the smallest number of 

rank-1 Boolean matrices needed to sum up to exactly create 
the matrix
•Computing (or even a good approximation of) this rank is NP-

hard
•This is equivalent to the minimum tiling problem

–Given k, finding the minimum-error rank-k BMF is also NP-
hard
•But note that this is not the same thing as maximum k-tiling
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The Basis Usage Problem
• The Basis Usage (BU) problem is the following
– Given a binary matrix A and a binary matrix B, find a binary matrix 

C s.t. |A – B ⊞ C| is minimized
• Here |A| is the number of non-zeros in A 

– Equivalently: given a binary column vector a and a binary matrix 
B, find a binary column vector c s.t. |a – B ⊞ c| is minimized 
•With B fixed, every column of A can be solved separately

• The Basis Usage problem is equivalent to the Positive-
Negative Partial Set Cover (±PSC) problem:
– Given a set system (P∪N, S), P∩N = ∅, find a subcollection 
C ⊆ S such that |N ∩ (∪C)| + |P \ (∪C)|  is minimized  
•Minimize the number of included negative elements plus not included 

positive elements 
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The Hardness of the BU Problem
• The BU problem is NP-hard (unsurprisingly)
• The BU problem is also NP-hard to approximate well
– It is NP-hard to approximate the BU problem to within a 

factor of 

for any ε > 0
– It is quasi-NP-hard to approximate the BU problem to 

within a factor of

•Quasi-NP-hardness: NP-hard unless NP ⊆ DTIME(npolylog(n))

• All the results hold for ±PSC as well
20
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Boolean CP Decomposition
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Boolean CP Decomposition
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Boolean Tucker Decomposition
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Boolean Tensor Rank
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• Boolean tensor rank is the minimum number of rank-1 
Boolean tensors needed to be summed to get the 
original tensor
• Boolean tensor rank is NP-hard to compute
– So is normal tensor rank

• Boolean tensor rank can be more than the smallest 
dimension
– So can normal tensor rank

• But no more than min{IJ, IK, JK}
–Neither can normal tensor rank

• There is no Boolean border rank
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Sparsity
• Binary matrix X of Boolean rank R and |X| 1s has 

Boolean rank-R decomposition A⊞B such that 
|A| + |B| ≤ 2|X| 
• Binary N-way tensor    of Boolean tensor rank R has 

Boolean rank-R CP-decomposition with factor 
matrices A1, A2, …, AN such that ∑i |Ai| ≤ N|   |
• Both results are existential only and extend to 

approximate decompositions
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X(1) = A(C�B)T

X(2) = B(C�A)T

X(3) = C(B�A)T
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An Algorithm for Boolean CP
• The normal CP can be 

solved using the ALS 
approach
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• Similar equations hold for 
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–Khatri–Rao product is the 

same in Boolean arithmetic
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A Greedy Algorithm for the BU
• Consider the column case of BU
– Find x to minimize |a – B⊞x|

• Every element of x selects whether the corresponding 
column of B is added to the presentation of a
– If an already-selected column of B has 1 in row i, we say 

that row i is covered 
• The algorithm:
–Try each column of B one-by-one and if the column covers 

more not-yet-covered 1s than it covers not-yet-covered 0s, 
set the corresponding element of x to 1
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Back to the CP
• We can use the greedy BU algorithm instead of the 

pseudo-inverse with the equations
• But starting from random starting points won’t give 

us very good factorizations
–There are many local minima 

• Instead, we can solve the ordinary BMF for the 
different matricizations to obtain the initial 
A, B, and C
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The Tucker Case
• For the matrices, we can

use same approach as
with the CP
• For the core, that’s not the case
–A small change can 

change everything
–But the core is small, so we can afford more time with it

• The algorithm
– If aipbjqckr = 0, the core’s value doesn’t matter
– If there’s gpqraipbjqckr = 1, nothing else matters
– For the rest, compute whether flipping gpqr would help
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Conclusions
• The tensor closed itemsets are natural generalizations 

of the normal ones
–Mining is harder / pruning is not so efficient

• The Boolean tensor decompositions are natural 
analogues of the real-valued ones
–Behave mostly similarly
– Some computations are harder
–Boolean tensor factorizations generalize tiling by allowing 

“holes” in the tiles

29



DTDM, WS 12/13 T IV.1-29 January 2013

Essays for Topic IV
• N-way itemset mining v.s. normal itemset mining
–What’s so hard with tensors? Why not use N-way Apriori (how 

would it work)? Do also maximal and non-derivable itemset’s 
definitions generalize to N modes?

• Noise-tolerant N-way itemsets
– Cerf et al. 2013 present an algorithm for mining noise-tolerant 

(closed) N-way itemsets. Explain the (main) ideas. Can this be 
used to compute Boolean CP decomposition? How? Will the BU 
problem be a problem?

• Applications of tensor decompositions in data mining
– Present some work that applies tensor decompositions in data 

mining. Explain the ideas. Are tensors necessary here? Is the 
work good?
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