Topic IV.1: Binary Tensors

Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

Topic IV.1: Binary Tensors

1. Closed Itemsets on Tensors
1.1. Definitions
1.2. Data-Peeler
2. Tiling on Tensors
2.1. Tiling as a Tensor CP Decomposition
3. Boolean Tensor Decompositions
3.1. Boolean Matrix Factorization
3.2. Boolean vs. Normal Decompositions

Closed Itemsets on Tensors

- Closed itemsets on a binary matrix:
- Combinatorial submatrix
- All elements are 1
- Adding any column would mean we would have to remove row(s) to satisfy the above requirements
- And same holds for adding a row
- Closed itemsets on a binary (3-way) tensor:
- Combinatorial subtensor
- All elements are 1
- Adding any fibre (on any mode) would mean we would have to remove fibre(s) from other modes to satisfy the above requirements

Cerf, Besson, Robardet \& Boulicaut 2009

Some Constraints

- Mode-wise minimum size
- Similar to standard minimum frequency
- Monotonic for each mode
- Minimum volume
- Similar to above (but not equivalent)
- Monotonic for each mode
- δ-isolated
- The fraction of 1 s in any mode- i fibre passing thru the subtensor that are outside it must be more than δ
- $\delta=1 \Rightarrow$ all 1s in all fibres must be in the sub-tensor

3D Market Baskets?

- Why mine closed subtensors?
- Market basket data
- Customers-by-products-by-shops
- Good for large chains with different types of shops
- Anything-by-anything-by-time
- Though looses the temporal autocorrelation
- Source IP-by-destination IP-by-destination port
- Network data analysis

Finding the Closed n-Way Itemsets

- Similar to traditional closed itemset mining, we want to find all itemsets satisfying our constraints
- There are 2^{I+J+K} possible sets in I-by- J-by- K tensor
- We hope we can prune the search space...
- The algorithm we're going to discuss is called DataPeeler
- We represent our search space as a tree
- Root represents all possible n-way itemsets
- The leaves are the closed n-way itemsets
- This tree we want to prune

The Enumeration Tree

- Every node contains two collections of index sets, U and V
- Index sets define subtensors
- Every node represents all subtensors that contain U and are contained in $U \cup V$
- The union is over the index sets
- The root has empty U
- The leaves have empty V
- It is possible that these tensors are reduced
- Some modes are

0 -dimensional

The Enumeration Tree

- Every node contains two collections of index sets, U and V
- Index sets define subtensors
- Every node represents all subtensors that contain U and are contained in $U \cup V$
- The union is over the index sets
- The root has empty U
- The leaves have empty V
- It is possible that these tensors are reduced
- Some modes are

0 -dimensional

The Enumeration Tree

- Every node contains two collections of index sets, U and V
- Index sets define subtensors
- Every node represents all subtensors that contain U and are contained in $U \cup V$
- The union is over the index sets
- The root has empty U
- The leaves have empty V
- It is possible that these tensors are reduced
- Some modes are

0 -dimensional

The Enumeration Tree

- Every node contains two collections of index sets, U and V
- Index sets define subtensors
- Every node represents all subtensors that contain U and are contained in $U \cup V$
- The union is over the index sets
- The root has empty U
- The leaves have empty V
- It is possible that these tensors are reduced
- Some modes are

0 -dimensional

Building the Tree

- At every node (U, V), select a dimension in a mode in V and remove it from V
- Create two childs
- Left: Add that dimension in the correct mode in U
- Right: Don't add
- For the left child, we can remove all those elements of V that cannot be added to the sub-tensor to and keep it all-1s

An Example

$$
\begin{aligned}
& U=\{\{1\},\{1\},\{1\}\} \\
& V=\{\{2,3\},\{2\},\{2,3\}\}
\end{aligned}
$$

$U=\{\{1\},\{1\},\{1,2\}\}$
$V=\{\{2\},\{2\},\{3\}\}$
Discard 2 from 3rd mode

$$
\begin{aligned}
& U=\{\{1\},\{1\},\{1\}\} \\
& V=\{\{2,3\},\{2\},\{3\}\}
\end{aligned}
$$

- If U was $\{\{1\},\{1\},\{1\}\}$ and V was $\{\{2,3\},\{2\},\{2,3\}\}$ and we moved 2 from the 3 rd mode to U and $(3,1,2)$ is a 0 -element, the new V will be $\{\{2\},\{2\},\{3\}\}$

Checking for the Closedness

- We can check for the closedness during the enumeration
- If there exists a 1 in the tensor that is not in $U \cup V$ but which could be added to $U \cup V$ without breaking the all-1s property, then no child of this node will be closed
- The node can be pruned, the closure will appear in other part of the tree
- We don't need to try all 1 s not in $U \cup V$, just those corresponding to the dimension removed in the ancestors of this node that themselves were right childs

An Example

Handling other constraints

- If other constraints have been issued, we can stop traversing the branch if none of the subtensors represented by the node satisfies the constraints - We can get the maximum sizes of modes from $U \cup V$ - And the minimum sizes from U
- For example, for minimum size constraints, we stop if the size fo $U \cup V$ drops below the constraint
-Similar for minimum volume
-For δ-isolation, we can consider the fraction of 1 s that are outside U w.r.t. the number of 1s that are inside $U \cup V$

Final Notes on Data-Peeler

- The (greedy) strategy selecting the element to remove from V is crucial for fast execution
- Space complexity is $\prod_{i} I_{i}$ for I_{1}-by- I_{2}-by \ldots-by- I_{n} tensor
- A dense representation, won't work with huge-but-sparse tensors
- The biggest data set used in the paper is 323-by-323-by-39-by-6
- 24.4 M elements
- 602 K closed itemsets

Tiling Tensors

- Tiling tensors is analogous to tiling matrices
- Similarly, we can use the closed n-way itemsets as building blocks for the tiling
- Reduces to the set cover problem-again
- A tiling gives us a Boolean CP decomposition of the tensor

Matrix Tiling as Decomposition

- Each tile is a rank-1 submatrix
- Outer product of two binary vectors
- If we sum two tiles, we get a non-binary matrix
- Instead of sum, we can take the element-wise maximum
- This is known as the Boolean matrix product

$$
(\mathbf{A} \boxplus \mathbf{B})_{i j}=\bigvee_{i=1}^{n} a_{i k} b_{k j}
$$

- Minimum tiling is finding the Boolean decomposition with minimum inner dimension

Tensor Tiling as CP Decomposition

- Analogously for tensors
- A tile is a rank-1 tensor
- Tiling is a Boolean sum of rank-1 tensors
- Minimum tiling is about finding the smallest number of rank-1 tensors to exactly express the original tensor
- Boolean tensor rank!

Boolean Tensor Decompositions

- We can transform both CP and Tucker decomposition into Boolean versions
- Original tensors are required to be binary
- All factors (and core tensor) are required to be binary
- The summation is replaced by logical OR
- The error measure is the Hamming distance between the original tensor and its decomposed representation
- Equals to sums-of-squares of element-wise differences
- Note: in (combinatorial) tiling, we don't allow "holes" in the tiles -this is more general

A Bit About Boolean Matrix Factorizations

- Boolean matrix factorization (BMF) differs from normal factorizations in significant parts
-Rank-1 Boolean matrices are rank-1 normal matrices
- The Boolean rank of a matrix is the smallest number of rank-1 Boolean matrices needed to sum up to exactly create the matrix
- Computing (or even a good approximation of) this rank is NPhard
- This is equivalent to the minimum tiling problem
-Given k, finding the minimum-error rank- k BMF is also NPhard
- But note that this is not the same thing as maximum k-tiling

The Basis Usage Problem

- The Basis Usage (BU) problem is the following
- Given a binary matrix \mathbf{A} and a binary matrix \mathbf{B}, find a binary matrix \mathbf{C} s.t. $|\mathbf{A}-\mathbf{B} \boxplus \mathbf{C}|$ is minimized
- Here $|\mathbf{A}|$ is the number of non-zeros in \mathbf{A}
- Equivalently: given a binary column vector a and a binary matrix \mathbf{B}, find a binary column vector \mathbf{c} s.t. $|\mathbf{a}-\mathbf{B} \boxplus \mathbf{c}|$ is minimized
- With B fixed, every column of A can be solved separately
- The Basis Usage problem is equivalent to the PositiveNegative Partial Set Cover (\pm PSC) problem:
- Given a set system $(P \cup N, S), P \cap N=\varnothing$, find a subcollection
$C \subseteq S$ such that $|N \cap(\cup C)|+|P \backslash(\cup C)|$ is minimized
- Minimize the number of included negative elements plus not included positive elements

The Hardness of the BU Problem

- The BU problem is NP-hard (unsurprisingly)
- The BU problem is also NP-hard to approximate well
- It is NP-hard to approximate the BU problem to within a factor of
for any $\varepsilon>0$

$$
\Omega\left(2^{\log ^{1-\varepsilon}|P|}\right)
$$

- It is quasi-NP-hard to approximate the BU problem to within a factor of

$$
\Omega\left(2^{(4 \log k)^{1-\varepsilon}}\right)
$$

- Quasi-NP-hardness: NP-hard unless NP \subseteq DTIME $\left(n^{\text {polylog }(n)}\right)$
- All the results hold for $\pm \mathrm{PSC}$ as well

Boolean CP Decomposition

Boolean CP Decomposition

Boolean Tucker Decomposition

Boolean Tensor Rank

- Boolean tensor rank is the minimum number of rank-1 Boolean tensors needed to be summed to get the original tensor
- Boolean tensor rank is NP-hard to compute
- So is normal tensor rank
- Boolean tensor rank can be more than the smallest dimension
- So can normal tensor rank
- But no more than $\min \{I J, I K, J K\}$
- Neither can normal tensor rank
- There is no Boolean border rank

Sparsity

- Binary matrix \mathbf{X} of Boolean rank R and $|\mathbf{X}|$ 1s has Boolean rank- R decomposition $\mathbf{A} \boxplus \mathbf{B}$ such that $|\mathbf{A}|+|\mathbf{B}| \leq 2|\mathbf{X}|$
- Binary N-way tensor \mathcal{X} of Boolean tensor rank R has Boolean rank- R CP-decomposition with factor matrices $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{N}$ such that $\sum_{i}\left|\mathbf{A}_{i}\right| \leq N|X|$
- Both results are existential only and extend to approximate decompositions

An Algorithm for Boolean CP

- The normal CP can be solved using the ALS approach

$$
\begin{aligned}
\mathbf{x}_{(1)} & =\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{T} \\
\mathbf{x}_{(2)} & =\mathbf{B}(\mathbf{C} \odot \mathbf{A})^{T} \\
\mathbf{x}_{(3)} & =\mathbf{C}(\mathbf{B} \odot \mathbf{A})^{T}
\end{aligned}
$$

An Algorithm for Boolean CP

- The normal CP can be solved using the ALS approach

$$
\begin{aligned}
\mathbf{x}_{(1)} & =\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{T} \\
\mathbf{x}_{(2)} & =\mathbf{B}(\mathbf{C} \odot \mathbf{A})^{T} \\
\mathbf{x}_{(3)} & =\mathbf{C}(\mathbf{B} \odot \mathbf{A})^{T}
\end{aligned}
$$

- Similar equations hold for the Boolean CP
-Khatri-Rao product is the same in Boolean arithmetic

$$
\begin{aligned}
\mathbf{x}_{(1)} & =\mathbf{A} \boxplus(\mathbf{C} \odot \mathbf{B})^{T} \\
\mathbf{X}_{(2)} & =\mathbf{B} \boxplus(\mathbf{C} \odot \mathbf{A})^{T} \\
\mathbf{X}_{(3)} & =\mathbf{C} \boxplus(\mathbf{B} \odot \mathbf{A})^{T}
\end{aligned}
$$

An Algorithm for Boolean CP

- The normal CP can be solved using the ALS approach

$$
\begin{aligned}
\mathbf{x}_{(1)} & =\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{T} \\
\mathbf{x}_{(2)} & =\mathbf{B}(\mathbf{C} \odot \mathbf{A})^{T} \\
\mathbf{x}_{(3)} & =\mathbf{C}(\mathbf{B} \odot \mathbf{A})^{T}
\end{aligned}
$$

- Similar equations hold for the Boolean CP
-Khatri-Rao product is the same in Boolean arithmetic
- But with Boolean, we don't have pseudo-inverses
- The BU problem!

$$
\begin{aligned}
& \mathbf{x}_{(1)}=\mathbf{A} \boxplus(\mathbf{C} \odot \mathbf{B})^{T} \\
& \mathbf{x}_{(2)}=\mathbf{B} \boxplus(\mathbf{C} \odot \mathbf{A})^{T} \\
& \mathbf{x}_{(3)}=\mathbf{C} \boxplus(\mathbf{B} \odot \mathbf{A})^{T}
\end{aligned}
$$

A Greedy Algorithm for the BU

- Consider the column case of BU
-Find \mathbf{x} to minimize $|\mathbf{a}-\mathbf{B} \boxplus \mathbf{x}|$
- Every element of \mathbf{x} selects whether the corresponding column of \mathbf{B} is added to the presentation of \mathbf{a}
- If an already-selected column of \mathbf{B} has 1 in row i, we say that row i is covered
- The algorithm:
- Try each column of \mathbf{B} one-by-one and if the column covers more not-yet-covered 1s than it covers not-yet-covered 0s, set the corresponding element of \mathbf{x} to 1

Back to the CP

- We can use the greedy BU algorithm instead of the pseudo-inverse with the equations
- But starting from random starting points won't give us very good factorizations
- There are many local minima
- Instead, we can solve the ordinary BMF for the different matricizations to obtain the initial \mathbf{A}, \mathbf{B}, and \mathbf{C}

The Tucker Case

- For the matrices, we can use same approach as with the CP

$$
\begin{aligned}
& \mathbf{X}_{(1)}=\mathbf{A} \boxplus \mathbf{G}_{(1)} \boxplus(\mathbf{C} \otimes \mathbf{B})^{T} \\
& \mathbf{X}_{(2)}=\mathbf{B} \boxplus \mathbf{G}_{(2)} \boxplus(\mathbf{C} \otimes \mathbf{A})^{T} \\
& \mathbf{X}_{(3)}=\mathbf{C} \boxplus \mathbf{G}_{(3)} \boxplus(\mathbf{B} \otimes \mathbf{A})^{T}
\end{aligned}
$$

- For the core, that's not the case
- A small change can change everything

$$
x_{i j k} \approx \bigvee_{p=1} \bigvee_{q=1} \bigvee_{r=1} g_{p q r} a_{i p} b_{j q} c_{k r}
$$

-But the core is small, so we can afford more time with it

- The algorithm
-If $a_{i p} b_{j q} c_{k r}=0$, the core's value doesn't matter
-If there's $g_{p q r} a_{i p} b_{j q} c_{k r}=1$, nothing else matters
-For the rest, compute whether flipping $g_{p q r}$ would help

Conclusions

- The tensor closed itemsets are natural generalizations of the normal ones
- Mining is harder / pruning is not so efficient
- The Boolean tensor decompositions are natural analogues of the real-valued ones
-Behave mostly similarly
- Some computations are harder
-Boolean tensor factorizations generalize tiling by allowing "holes" in the tiles

Essays for Topic IV

- N-way itemset mining v.s. normal itemset mining
- What's so hard with tensors? Why not use N-way Apriori (how would it work)? Do also maximal and non-derivable itemset's definitions generalize to N modes?
- Noise-tolerant N-way itemsets
- Cerf et al. 2013 present an algorithm for mining noise-tolerant (closed) N-way itemsets. Explain the (main) ideas. Can this be used to compute Boolean CP decomposition? How? Will the BU problem be a problem?
- Applications of tensor decompositions in data mining
- Present some work that applies tensor decompositions in data mining. Explain the ideas. Are tensors necessary here? Is the work good?

