Topic IV.1: Binary Tensors

Discrete Topics 1n Data Mining

Universitiat des Saarlandes, Saarbriicken
Winter Semester 2012/13

Topic IV.1: Binary Tensors il

1. Closed Itemsets on Tensors
1.1. Definitions
1.2. Data-Peeler

2. Tiling on Tensors
2.1. Tiling as a Tensor CP Decomposition

3. Boolean Tensor Decompositions
3.1. Boolean Matrix Factorization

3.2. Boolean vs. Normal Decompositions

DTDM, WS 12/13 291]

Closed Itemsets on Tensors

* Closed itemsets on a binary matrix:
— Combinatorial submatrix
— All elements are 1

— Adding any column would mean we would have to remove
row(s) to satisfy the above requirements

* And same holds for adding a row

* Closed 1itemsets on a binary (3-way) tensor:
— Combinatorial subtensor
— All elements are 1

— Adding any fibre (on any mode) would mean we would have
to remove fibre(s) from other modes to satisfy the above

requirements
Cerf, Besson, Robardet & Boulicaut 2009

Some Constraints

e Mode-wise minimum size
— Similar to standard minimum frequency

— Monotonic for each mode

e Minimum volume
— Similar to above (but not equivalent)
— Monotonic for each mode

e 0-isolated

—The fraction of 1s in any mode-i fibre passing thru the sub-
tensor that are outside 1t must be more than o

0 =1 = all Is1n all fibres must be in the sub-tensor

3D Market Baskets?

* Why mine closed subtensors?

e Market basket data

— Customers-by-products-by-shops
* Good for large chains with different types of shops

* Anything-by-anything-by-time

— Though looses the temporal autocorrelation

* Source IP-by-destination IP-by-destination port
— Network data analysis

Finding the Closed n-Way Itemsets

* Similar to traditional closed itemset mining, we want
to find all itemsets satisfying our constraints

— There are 2/*/*X possible sets in /-by-J-by-K tensor
— We hope we can prune the search space...

* The algorithm we’re going to discuss 1s called Data-
Peeler

* We represent our search space as a tree
—Root represents all possible n-way 1temsets

he leaves are the closed n-way itemsets

his tree we want to prune

The Enumeration Tree

* Every node contains two collections of index sets,
Uand V

— Index sets define subtensors

* Every node represents all subtensors that contain U and
are contamed m UU

he union 1s over the index sets
he root has empty U

he leaves have empty V'
* It 1s possible that these
tensors are reduced

— Some modes are
0-dimensional

The Enumeration Tree

* Every node contains two collections of index sets,
Uand V

— Index sets define subtensors

* Every node represents all subtensors that contain U and
are contamed m UU

he union 1s over the index sets
he root has empty U

he leaves have empty V'

* It 1s possible that these
tensors are reduced

— Some modes are
0-dimensional

The Enumeration Tree

* Every node contains two collections of index sets,
Uand V

— Index sets define subtensors

* Every node represents all subtensors that contain U and
are contamed m UU

he union 1s over the index sets
he root has empty U a /
he leaves have empty V'

* It 1s possible that these
tensors are reduced

— Some modes are
0-dimensional

The Enumeration Tree

* Every node contains two collections of index sets,
Uand V

— Index sets define subtensors

* Every node represents all subtensors that contain U and
are contamed m UU

he union 1s over the index sets

he root has empty U / Z
he leaves have empty V'

* It 1s possible that these
tensors are reduced

— Some modes are
0-dimensional

Building the Tree

* At every node (U, V), select a dimension 1n a mode in
J and remove 1t from V
e Create two childs

— Left: Add that dimension 1n the correct mode in U
— Right: Don’t add

* For the left child, we can remove all those elements of

V' that cannot be added to the sub-tensor to and keep 1t
all-1s

An Example

(U= {1 {1 {1
V'={{2, 3% {2}, {2, 3}}

_ J

Move 2 from Discard 2 from
3rd mode to U 3rd mode

(U= (1, {1, 2 (U={{1) {1} {1}
V= {12}, {2}, {3} V={{2, 3}, {2} {3}

. \-

—If Uwas {{1},{1},11}} and V"'was {{2, 3}, {2}, {2, 3}
and we moved 2 from the 3rd mode to U and (3, 1, 2) 1s
a 0-clement, the new V' will be {{2}, {2}, {3}}

Checking for the Closedness

* We can check for the closedness during the
enumeration

o If there exists a 1 1n the tensor that 1s not in U U V but

which could be added to U U V" without breaking the
all-1s property, then no child of this node will be

closed

— The node can be pruned, the closure will appear 1n other
part of the tree
— We don’t need to try all Isnot in U U V, just those

corresponding to the dimension removed 1n the ancestors of
this node that themselves were right childs

An Example

(U={1} {1} (1Y
V="1{2,3}, {2}, {2, 3}

/ drop 2 from 3rd mode

) N

U={{1}, {1}, {1, 2}f U={{1} {1}, {1}
V="1002012}, {3} V="1{2, 3}, {2}, {3/

. .) drop 3 from

\ 1st mode

(U= ({1} {1}, {1}

1£ €122, {1,2), {1,230 is full-1s 7 |V = {12 {20, {3/
subtensor, this node cannot yield to >
closed itemsets

~N

Handling other constraints

* If other constraints have been 1ssued, we can stop
traversing the branch 1if none of the subtensors
represented by the node satisfies the constraints

— We can get the maximum sizes of modes from U U V
— And the minimum sizes from U

* For example, for minimum size constraints, we stop 1f
the size fo U U V drops below the constraint

— Similar for minimum volume

— For o-1solation, we can consider the fraction of 1s that are
outside U w.r.t. the number of 1s that are inside U U V

Final Notes on Data-Peeler

* The (greedy) strategy selecting the element to remove
from V 1s crucial for fast execution

» Space complexity is | |; I; for [1-by-I-by...-by-1,
tensor

— A dense representation, won’t work with huge-but-sparse
tensors

— The biggest data set used 1n the paper 1s 323-by-323-by-39-
by-6
* 24.4M elements
* 602K closed itemsets

Tiling Tensors

* Tiling tensors 1s analogous to tiling matrices

* Stmilarly, we can use the closed n-way itemsets as
building blocks for the tiling

—Reduces to the set cover problem—again

* A tiling gives us a Boolean CP decomposition of the
tensor

Matrix Tiling as Decomposition

 Each tile 1s a rank-1 submatrix

— Outer product of two binary vectors

* If we sum two tiles, we get a
non-binary matrix

— Instead of sum, we can take the
element-wise maximum

— This 1s known as the Boolean

matrix product -
(A B)ij — \/aikbkj
i=1
* Minimum tiling 1s finding the Boolean decomposition
with minimum inner dimension

Tensor Tiling as CP Decomposition

* Analogously for tensors
— A tile 1s a rank-1 tensor
—Tiling 1s a Boolean sum of rank-1 tensors

— Minimum tiling 1s about finding the smallest number of
rank-1 tensors to exactly express the original tensor

e Boolean tensor rank!
C1 Co

L/

b1 \/

Boolean Tensor Decompositions

* We can transform both CP and Tucker decomposition
into Boolean versions
— Original tensors are required to be binary
— All factors (and core tensor) are required to be binary
— The summation is replaced by logical OR

— The error measure 1s the Hamming distance between the
original tensor and 1ts decomposed representation

* Equals to sums-of-squares of element-wise differences

* Note: 1n (combinatorial) tiling, we don’t allow “holes” 1n the tiles
—this 1s more general

Miettinen 2011

A Bit About Boolean Matrix Factorizations

* Boolean matrix factorization (BMF) differs from
normal factorizations in significant parts

— Rank-1 Boolean matrices are rank-1 normal matrices

—The Boolean rank of a matrix i1s the smallest number of
rank-1 Boolean matrices needed to sum up to exactly create
the matrix

* Computing (or even a good approximation of) this rank 1s NP-
hard

e This 1s equivalent to the minimum tiling problem

— Given £, finding the minimum-error rank-k BMF 1s also NP-
hard

* But note that this 1s not the same thing as maximum £A-tiling

The Basis Usage Problem

* The Basis Usage (BU) problem 1s the following

— (Given a binary matrix A and a binary matrix B, find a binary matrix
Cs.t. |A—B & C| 1s minimized

* Here |A| 1s the number of non-zeros in A

— Equivalently: given a binary column vector a and a binary matrix

B, find a binary column vector

c s.t. |a— B H ¢| 1s minimized

* With B fixed, every column of A can be solved separately

* The Basis Usage problem 1s equivalent to the Positive-

Negative Partial Set Cover (-

-PSC) problem:

— Given a set system (PUN, S), PNN = &, find a subcollection
C C S such that [N N (UC)| + |P\(UC)| is minimized

* Minimize the number of included negative elements plus not included

positive elements

The Hardness of the BU Problem

* The BU problem 1s NP-hard (unsurprisingly)

* The BU problem 1s also NP-hard to approximate well

— It 1s NP-hard to approximate the BU problem to within a
factor of

0O (zlogl_g\P\)

for any € > ()

— It 1s quasi-NP-hard to approximate the BU problem to
within a factor of
0O (2(410gk)1_8)

e Quasi-NP-hardness: NP-hard unless NP C DTIME(npolylog)
e All the results hold for =PSC as well

Boolean CP Decomposition

WS 12/13 29 January 2013 TIV.I-21

Boolean CP Decomposition

WS 12/13 29 January 2013 TIV.I-21

Boolean Tucker Decomposition

P Q
Xijk =~ \/ \/ \/ JpqrQipDjqCr

p=1q=1r=1

Boolean Tensor Rank

* Boolean tensor rank 1s the minimum number of rank-1
Boolean tensors needed to be summed to get the
original tensor

* Boolean tensor rank 1s NP-hard to compute

— So 1s normal tensor rank

e Boolean tensor rank can be more than the smallest
dimension

— So can normal tensor rank

* But no more than min{/1J, IK, JK}

— Neither can normal tensor rank

 There 1s no Boolean border rank

Sparsity

* Binary matrix X of Boolean rank R and |X]| 1s has
Boolean rank-R decomposition AEHB such that

Al + B = 2X]
* Binary N-way tensor X of Boolean tensor rank R has

Boolean rank-R CP-decomposition with factor
matrices Ai, Az, ..., Ay such that) ; |A;| < N|X]

* Both results are existential only and extend to
approximate decompositions

An Algorithm for Boolean CP

* The normal CP can be
solved using the ALS
approach

An Algorithm for Boolean CP

* The normal CP can be
solved using the ALS
approach

» Similar equations hold for

the Boolean CP

— Khatri—Rao product 1s the
same 1n Boolean arithmetic

An Algorithm for Boolean CP

* The normal CP can be
solved using the ALS
approach

» Similar equations hold for

the Boolean CP

— Khatri—Rao product 1s the
same 1n Boolean arithmetic

* But with Boolean, we don’t
have pseudo-inverses

—The BU problem!

A Greedy Algorithm for the BU

e Consider the column case of BU

— Find x to minimize |a — BEX|

* Every element of x selects whether the corresponding
column of B 1s added to the presentation of a

—If an already-selected column of B has 1 in row i, we say
that row i 1s covered

* The algorithm:

—Try each column of B one-by-one and if the column covers
more not-yet-covered 1s than 1t covers not-yet-covered 0s,
set the corresponding element of x to 1

Back to the CP

* We can use the greedy BU algorithm instead of the
pseudo-inverse with the equations

* But starting from random starting points won’t give
us very good factorizations

— There are many local minima

* Instead, we can solve the ordinary BMF for the

different matricizations to obtain the initial
A, B, and C

The Tucker Case

» For the matrices, we can (CoB)"
use same approach as (C2A)T

* For the core, that’s not the case ;
— A small change can
S : Xijk ~ \/ \/ \/ gpqraipb)’qckr

change everything p=1q=1r=1

— But the core 1s small, so we can atford more time with 1t

* The algorithm
—1If a;pbj,ci- = 0, the core’s value doesn’t matter
—If there’s gpgraipbjsci- = 1, nothing else matters
—For the rest, compute whether tlipping g,,- would help

Conclusions

* The tensor closed itemsets are natural generalizations
of the normal ones

— Mining 1s harder / pruning 1s not so efficient

* The Boolean tensor decompositions are natural
analogues of the real-valued ones
— Behave mostly similarly
— Some computations are harder

— Boolean tensor factorizations generalize tiling by allowing
“holes” 1n the tiles

Essays for Topic IV

* N-way itemset mining v.s. normal itemset mining

— What’s so hard with tensors? Why not use N-way Aprior1 (how
would 1t work)? Do also maximal and non-derivable itemset’s
definitions generalize to N modes?

* Noise-tolerant N-way itemsets

— Cert et al. 2013 present an algorithm for mining noise-tolerant
(closed) N-way itemsets. Explain the (main) ideas. Can this be
used to compute Boolean CP decomposition? How? Will the BU
problem be a problem?

* Applications of tensor decompositions in data mining

— Present some work that applies tensor decompositions 1n data
mining. Explain the ideas. Are tensors necessary here? Is the
work good?

