Topic IV.2: Tensor Applications

Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

Topic IV.2: Tensor Applications

1. Tucker2 Decompositions and RESCAL
1.1. Tucker2 and equivalent factors
1.2. The RESCAL algorithm
2. Recap of the course
3. Feedback from Essay III

Tucker2 Decompositions and RESCAL

- Recall: Tucker3 decomposition decomposes a 3-way tensor into smaller core tensor and three factor matrices
- Tucker2 decomposition decomposes a 3-way tensor into a core tensor and two factor matrices
- If the original tensor was of size N-by- M-by- K, the core is of size I-by- J-by- K (or M-by- I-by- J or I-by- M-by- J)
-Equivalently, Tucker2 is Tucker3 with one factor matrix replaced with an identity matrix

More on Tucker2

- Tucker2 can be presented slice-wise:
$\mathbf{X}_{k}=\mathbf{A G}_{k} \mathbf{B}^{T}$ for each k
$-\mathbf{X}_{k}$ is the k th (frontal) slice of X
$-\mathbf{G}_{k}$ is the k th (frontal) slice of the core tensor \mathcal{G}
- A and B are the factor matrices
- In matricized form
$\mathbf{X}_{(1)}=\mathbf{A} \mathbf{G}_{(1)}\left(\mathbf{I}_{K} \otimes \mathbf{B}\right)^{T}$
- χ is N-by- M-by- K

What if $\mathrm{B}=\mathrm{A}$?

- Assume our tensor's two modes represent same entities
-E.g. tensor is subject-relation-object, with subjects and objects from the same set of entities (e.g. humans)
- Sender-topic-receiver with senders and receivers in the same set of people
- We can model this by restricting the two factor matrices to be the same
-"Flow of information"
- If we assign a dimension into a factor in one mode, that assignment holds also in the other mode

The RESCAL Problem

- Given an N-by- N-by- M tensor X and rank R, find an N-by- R factor matrix A and R-by- R-by- M core tensor \mathcal{G} such that they minimize

Nickel, Tresp \& Kriegel 2011, 2012

The RESCAL Algorithm

- Iterative updates
- In updating \mathbf{A} for $\mathbf{A G} \mathbf{A}_{m}{ }^{T}$, we temporarily consider \mathbf{A} and \mathbf{A}^{T} different matrices, and only update \mathbf{A}
- Updating A: We stack the frontal slices of the data side-by-side and solve the resulting matrix problem
$-\mathbf{Y} \approx \mathbf{A H}\left(\mathbf{I}_{2} \otimes \otimes \mathbf{A}^{T}\right)$
$\cdot \mathbf{Y}=\left(\mathbf{X}_{1}, \mathbf{X}_{1}{ }^{T}, \mathbf{X}_{2}, \mathbf{X}_{2}{ }^{T}, \ldots, \mathbf{X}_{M}, \mathbf{X}_{M}{ }^{T}\right)$
$\cdot \mathbf{H}=\left(\mathbf{G}_{1}, \mathbf{G}_{1}{ }^{T}, \mathbf{G}_{2}, \mathbf{G}_{2}{ }^{T}, \ldots, \mathbf{G}_{M}, \mathbf{G}_{M^{T}}\right)$
- The gradient of this is

$$
\mathbf{H}\left(\left(\mathbf{I} \otimes \mathbf{A}^{\prime T} \mathbf{A}^{\prime}\right) \mathbf{H}^{T} \mathbf{A}^{T}-\left(\mathbf{I} \otimes \mathbf{A}^{\prime T}\right) \mathbf{Y}^{T}\right)+\lambda \mathbf{A}^{T}
$$

- Here \mathbf{A} ' is the version of A kept constant

Update Rules Continued

- Setting the gradient to zero, we get update rule
$\mathbf{A} \leftarrow\left(\sum_{m=1}^{M} \mathbf{X}_{m} \mathbf{A G}_{m}^{T}+\mathbf{X}_{m}^{T} \mathbf{A} \mathbf{G}_{m}\right)\left(\sum_{m=1}^{M} \mathbf{B}_{m}+\mathbf{C}_{m}+\lambda \mathbf{I}\right)^{-1}$
-Here $\mathbf{B}_{m}=\mathbf{G}_{m} \mathbf{A}^{T} \mathbf{A} \mathbf{G}_{m}{ }^{T}$ and $\mathbf{C}_{m}=\mathbf{G}_{m}{ }^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{G}_{m}$
- Updating G: Writing \mathbf{X}_{m} and \mathbf{G}_{m} as vectors, we get optimization task

$$
\left\|\operatorname{vec}\left(\mathbf{X}_{m}\right)-(\mathbf{A} \otimes \mathbf{A}) \operatorname{vec}\left(\mathbf{G}_{m}\right)\right\|+\lambda\left\|\operatorname{vec}\left(\mathbf{G}_{m}\right)\right\|
$$

-Regularized linear regression

$$
\mathbf{G}_{m} \leftarrow\left(\mathbf{Z}^{T} \mathbf{Z}+\lambda \mathbf{I}\right)^{-1} \mathbf{Z}_{\operatorname{vec}}\left(\mathbf{X}_{m}\right)
$$

- $\mathbf{Z}=\mathbf{A} \otimes \mathbf{A}$

A Bit on Complexity

- $\mathbf{Z}=\mathbf{A} \otimes \mathbf{A}$ can be huge
- The most expensive computation is $\left(\mathbf{Z}^{T} \mathbf{Z}+\lambda \mathbf{I}\right)-1$
- The same computation works for every frontal slice of \mathcal{X}
- If there's no regularization at \mathcal{G}, then this becomes $\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1}=\left((\mathbf{A} \otimes \mathbf{A})^{T}(\mathbf{A} \otimes \mathbf{A})\right)^{-1}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A} \otimes\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}$
- Only needs the inverse of R-by- R matrix $\mathbf{A}^{T} \mathbf{A}$
- We can use the QR matrix decomposition
$-\mathbf{A}=\mathbf{Q R}$, where \mathbf{Q} is orthogonal and \mathbf{R} is upper triangular
- We get $\mathbf{X}_{m}-\mathbf{A G}_{m} \mathbf{A}^{T}=\mathbf{X}_{m}-\mathbf{Q R G} \mathbf{R}_{m} \mathbf{R}^{T} \mathbf{Q}^{T}$
$=\mathbf{Q}^{T} \mathbf{X}_{m} \mathbf{Q}-\mathbf{R G}_{m} \mathbf{R}^{T}$
- Now \mathbf{R} is only R-by- R

More on Computational Complexity

 non-zeros in X

Application of RESCAL

- Tensor factorizations like RESCAL can be used for link prediction
- Non-zero elements mean observed links
- Zero elements mean unobserved
- The factorization will give us a representation of the original tensor where some of the zero elements will be represented with values above some threshold t - These elements are predicted as missing links
- This can be evaluated using training data
- Problem: Multiplying the factors back is very expensive operation

Recap of the Course

- Discrete topics in data mining
- A.k.a. "What Pauli likes to talk about in DM"
- The modules of the course are not strongly connected
- But some connections exist...
- Aim: high-level view of the ideas
-Not too much details (too little details?)
- Few selected papers on each topic
- Not necessarily the "best" papers
- Very subjective selections process
- Essays instead of home works
- Good (?) training for reading and writing

Intro

- Data mining, in a broad sense, is the set of techniques for analyzing and understanding data. (Zaki \& Meira)
- Is data mining voodoo science?
- Data mining is also a methodological science
- The development of the tools to do data mining
-C.f. statistics

Topic I: Pattern Set Mining

- What are patterns?
-Frequent itemsets? Others?
- The flood of itemsets
- Closed itemsets
- No item can be added without changing the support
- Maximal itemsets
- No item can be added without becoming infrequent
- Non-derivable itemsets
- The support can't be computed from subsets support

Tiling problems

- Minimum tiling. Given \boldsymbol{X}, find the least number of tiles $(\boldsymbol{r}, \boldsymbol{c})$ such that
-For all (i, j) s.t. $x_{i j}=1$, there exists at least one pair $(\boldsymbol{r}, \boldsymbol{c})$ such that $i \in \boldsymbol{r}$ and $j \in \boldsymbol{c}$ (i.e. $x_{i j} \in \boldsymbol{X}(\boldsymbol{r}, \boldsymbol{c})$)
$\bullet i \in r$ if exists j s.t. $r_{j}=i$
- Maximum \boldsymbol{k}-tiling. Given \boldsymbol{X} and integer k, find k tiles $(\boldsymbol{r}, \boldsymbol{c})$ such that
- The number of elements $x_{i j}=1$ that do belong in at least one $\boldsymbol{X}(\boldsymbol{r}, \boldsymbol{c})$ is maximized

Geometric Tiles

- There are $2^{n} 2^{m}$ possible combinatorial submatrices in an n-by- m matrix
- If we look for density, we cannot look just monochromatic areas
- A geometric (density) tile is a tile with continuous row and column indices ${ }^{\text {Teksti }}$
- It can be described given two corners ${ }^{20}$
- Or specific corner plus width and height ${ }_{150}$ - Only $n^{2} m^{2}$ possible
- We also allow a hierarchy of tiles

- A sub-tile must be completely within its parent

Tiles That Overlap Within Parents

No overlap

Overlap
within
parent

Tatti \& Vreeken 2012

The MDL Principle and Data Mining

- The MDL principle can be used to combat overfitting -Overfitting: model explains the training data too well and doesn't generalize to unseen data
- MDL presents a natural penalty to too complex models
- The MDL principle can be used to select the output - Among many possible sets of results (models), select the one that compresses the data best
- Note: we must explain the whole data
- E.g. MDL does not allow lossy compression
- But we can circumvent this by having a lossy model and a correction term (error)

Example of a Final Code Table

Code Table

Topic II: Graph Mining

- Graphs are everywhere
- Analysing them is important
- Measures of centrality
- Degree centrality
- Eccentricity centrality
- Closeness centrality
- Betweenness centrality
- Prestige
- PageRank
- Random graph models
- Erdős-Renyi
- Watts-Strogats
- Barabási-Albert

Frequent Subgraph Mining

- Given a set D of n graphs and a minimum support parameter minsup, find all connected graphs that are subgraph isomorphic to at least minsup graphs in D
-Enormously complex problem
-For graphs that have m vertices there are
- $2^{O\left(m^{2}\right)}$ subgraphs (not all are connected)
- If we have s labels for vertices and edges we have
- $O\left((2 s)^{O\left(m^{2}\right)}\right)$ labelings of the different graphs
-Counting the support means solving multiple NP-hard problems

The AGM Algorithm

- Start with frequent graphs of 1 vertex
- while there are frequent graphs left
- Join two frequent ($k-1$)-vertex graphs
- Check the resulting graphs subgraphs are frequent
- If not, continue
- Compute the canonical form of the graph
- If this canonical form has already been studied, continue
-Compare the canonical form with the canonical forms of the k-vertex subgraphs of the graphs in D
- If the graph is frequent, keep, otherwise discard
- return all frequent subgraphs

The gSpan Algorithm

- gSpan:
-for each frequent 1-edge graphs
- call subgrm to grow all nodes in the code tree rooted in this 1-edge graph
- remove this edge from the graph
- subgrm
-if the code is not canonical, return
- Add this graph to the set of frequent graphs
-Create each super-graph with one more edge and compute its frequency
- call subgrm with each frequent super-graph

More Coherent Story

Clinton
Lewinsky \square
Impeachment \square
Gore \square
Vote

Topic consistent over transitions

More Detailed Example

Shahaf, Guestrin \& Horvitz 2012a

Topic III: Significance Testing

- The bread-and-butter of statistics
- Are my finding significant?
-How to test this in data mining?

The Main Idea

- Let $O_{k, s}$ be the number of observed k-itemsets of support at least s
- Let $\hat{O}_{k, s}$ be the random variable corresponding to that in a random dataset
- Theorem. There exists a level $s_{\min }$ such that if $s \geq s_{\min }, \hat{O}_{k, s}$ is approximated well by Poisson distribution
- With this, we can compute the p-values easily
- No need for data samples (almost...)
-Only works with large-enough support levels
- Rare events

WWW. PHDCOMICS.COM

Swaps

- A swap box of \boldsymbol{D} is a 2-by-2 combinatorial submatrix that is either diagonal or anti-diagonal
- A swap turns diagonal swap box into anti-diagonal, or vice versa
- Theorem [Ryser '57]. If $\boldsymbol{A}, \boldsymbol{B} \in M(\boldsymbol{r}, \boldsymbol{c})$, then \boldsymbol{A} is reachable from \boldsymbol{B} with a finite number of swaps

Example Markov chain

$$
P=\left(\begin{array}{ccc}
0 & 9 / 10 & 1 / 10 \\
3 / 10 & 1 / 10 & 6 / 10 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

The Metropolis Algorithm

- The Metropolis algorithm is a general technique to transform any irreducible Markov chain into a timereversible chain with a required stationary distribution - A Markov chain is time-reversible if $\pi_{i} \boldsymbol{P}_{i j}=\pi_{j} \boldsymbol{P}_{j i}$
- Let $N(x), N$, and M be as in previous slide, and let $\boldsymbol{\pi}=$ $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ be the desired stationary distribution. -Let

$$
\mathbf{P}_{x y}= \begin{cases}1 / M \min \left\{1, \pi_{y} / \pi_{x}\right\} & \text { if } x \neq y \text { and } y \in N(x), \\ 0 & \text { if } x \neq y \text { and } y \notin N(x), \\ 1-\sum_{y \neq x} \mathbf{P}_{x y} & \text { if } x=y .\end{cases}
$$

- If the chain is aperiodic and irreducible, the stationary distribution is the desired one

Local Changes

- One-element changes
- Replace a value
- Add another value
- Four-element changes

-Rotate
Rotate
- If $a=a^{\prime}$ and $b=b^{\prime}$, equals to swap
-Mask
- Preserves row and column sums

Mask

Finding the MaxEnt Distribution

- Finding the MaxEnt distribution is a convex program with linear constraints

$$
\begin{aligned}
\max _{\operatorname{Pr}(\mathbf{x})} & -\sum_{\mathbf{x}} \operatorname{Pr}(\mathbf{x}) \log \operatorname{Pr}(\mathbf{x}) \\
\text { s.t. } & \sum_{\mathbf{x}} \operatorname{Pr}(\mathbf{x}) f_{i}(\mathbf{x})=d_{i} \quad \text { for all } i \\
& \sum_{\mathbf{x}} \operatorname{Pr}(\mathbf{x})=1
\end{aligned}
$$

- Can be solved, e.g., using the Lagrange multipliers

Example

minimize $f(x, y)=x^{2} y$
subject to $g(x, y)=x^{2}+y^{2}=3$

$$
L(x, y, \lambda)=x^{2} y+\lambda\left(x^{2}+y^{2}-3\right)
$$

$$
\frac{\partial \mathrm{L}}{\partial x}=2 x y+2 \lambda x=0
$$

$$
\frac{\partial L}{\partial y}=x^{2}+2 \lambda y=0
$$

$$
\frac{\partial \mathrm{L}}{\partial \lambda}=x^{2}+y^{2}-3=0
$$

Solution: $x= \pm \sqrt{ } 2, y=-1$

MaxEnt Models for Tiling

- The Tiling problem
- Binary data, aim to find fully monochromatic submatrices
- Constraints: the expected row and column margins

$$
\begin{array}{r}
\sum_{\mathbf{D} \in\{0,1\}^{n \times m}} \operatorname{Pr}(\mathbf{D})\left(\sum_{j=1}^{m} d_{i j}\right)=r_{i} \\
\sum_{\mathbf{D} \in\{0,1\}^{n \times m}} \operatorname{Pr}(\mathbf{D})\left(\sum_{i=1}^{n} d_{i j}\right)=c_{j}
\end{array}
$$

- Note that these are in the correct form

Preserving Means and Variances

- To preserve row and column means and variances, we need to constraint
- Row and column sums
- Row and column sums-of-squares
- After solving the MaxEnt equation, we again get that the MaxEnt distribution for \mathbf{D} is a product of probabilities for $d i j$
$-\operatorname{Pr}\left(d_{i j}\right) \sim \mathcal{X}\left(-\frac{\lambda_{i}^{j}+\lambda_{j}^{c}}{2\left(\mu_{i}^{r}+\mu_{i}^{c}\right)},\left(2\left(\mu_{i}^{r}+\mu_{j}^{c}\right)\right)^{-1 / 2}\right)$
- $\lambda \mathrm{s}$ are Lagrange multipliers associated with the constraints on sums
- $\mu \mathrm{s}$ are Lagrange multipliers associated with the constraints on sums-of-squares

Topic IV: Tensors

- Tensors are cool.

Feedback on Topic III Essays

- Generally, quality's still high
- MaxEnt seemed to cause problems to you
- Very briefly discussed
-Sometimes mixed with other approaches using maximum entropy
- Both swap-based and MaxEnt-based methods can handle numerical data
- Constraining row and column margins makes only sense if row and column margins make sense

Exam Information

- 19 February (Tuesday)
- Oral exam
- Room 021 at MPII building (E1.4)
- Time frame: $10 \mathrm{am}-6 \mathrm{pm}$
- If you have constraints within this time frame, send me email
- About 20 min per student
- I will ask questions on one or two topic areas
- You can veto one proposed topic are-but only one

