Topic IV: Tensors

Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

Topic IV: Tensors

1. What is a ... tensor?
2. Basic Operations
3. Tensor Decompositions and Rank
3.1. CP Decomposition
3.2. Tensor Rank
3.3. Tucker Decomposition

I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of us have to make our way laboriously on foot.

Albert Einstein in a letter to Tullio Levi-Civita

What is a ... tensor?

- A tensor is a multi-way extension of a matrix
- A multi-dimensional array
- A multi-linear map
- In particular, the following are all tensors:

What is a ... tensor?

- A tensor is a multi-way extension of a matrix
- A multi-dimensional array
- A multi-linear map
- In particular, the following are all tensors:
-Scalars
13

What is a ... tensor?

- A tensor is a multi-way extension of a matrix
- A multi-dimensional array
- A multi-linear map
- In particular, the following are all tensors:
- Scalars
- Vectors

$$
(13,42,2011)
$$

What is a ... tensor?

- A tensor is a multi-way extension of a matrix
- A multi-dimensional array
- A multi-linear map
- In particular, the following are all tensors:
- Scalars
- Vectors
-Matrices

$$
\left(\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right)
$$

What is a ... tensor?

- A tensor is a multi-way extension of a matrix
- A multi-dimensional array
- A multi-linear map
- In particular, the following are all tensors:
- Scalars
- Vectors
- Matrices

What is a ... tensor?

- A tensor is a multi-way extension of a matrix
- A multi-dimensional array
- A multi-linear map
- In particular, the following are all tensors:
- Scalars
- Vectors
- Matrices

Why Tensors?

- Tensors can be used when matrices are not enough
- A matrix can represent a binary relation
- A tensor can represent an n-ary relation
- E.g. subject-predicate-object data
- A tensor can represent a set of binary relations
- Or other matrices
- A matrix can represent a matrix
- A tensor can represent a series/set of matrices
-But using tensors for time series should be approached with care

Fibres and Slices

Kolda \& Bader 2009

Basic Operations

- Tensors require extensions to the standard linear algebra operations for matrices
- A multi-way vector outer product is a tensor where each element is the product of corresponding elements in vectors: $\mathcal{X}=\mathbf{a} \circ \mathbf{b} \circ \mathbf{c},(X)_{i j k}=a_{i} b_{j} c_{k}$
- A tensor inner product of two same-sized tensors is the sum of the element-wise products of their values: $\langle X, \mathcal{Y}\rangle=\sum_{i=1}^{I} \sum_{j=1}^{J} \cdots \sum_{z=1}^{Z} x_{i j \cdots z} y_{i j \cdots z}$

Tensor Matricization

- Tensor matricization unfolds an N-way tensor into a matrix
-Mode- \boldsymbol{n} matricization arranges the mode- n fibers as columns of a matrix
- Denoted $\mathbf{X}_{(n)}$
- As many rows as is the dimensionality of the nth mode
- As many columns as is the product of the dimensions of the other modes
- If X is an N-way tensor of size $I_{1} \times I_{2} \times \ldots \times I_{N}$, then $\mathbf{X}_{(n)}$ maps element $x_{i_{1}, i_{2}, \ldots, i_{N}}$ into (i_{n}, j) where
$j=1+\sum_{k=1}^{N}\left(i_{k}-1\right) J_{k}[k \neq n]$ with $J_{k}=\prod_{m=1}^{k-1} I_{m}[m \neq n]$

Matricization Example

$$
\boldsymbol{x}=\left(\left(\begin{array}{ll}
0 & 0 \\
l_{0} & 1 \\
0
\end{array}\right)^{1}\right)
$$

Matricization Example

$$
\boldsymbol{X}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Matricization Example

$$
\begin{aligned}
\boldsymbol{X} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\mathbf{X}_{(1)} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right)
\end{aligned}
$$

Matricization Example

$$
\begin{aligned}
\boldsymbol{X} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\mathbf{X}_{(1)} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right) \\
\mathbf{X}_{(2)} & =\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{array}\right) \\
\mathbf{X}_{(3)} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right)
\end{aligned}
$$

Tensor Multiplication

- Let X be an N-way tensor of size $I_{1} \times I_{2} \times \ldots \times I_{N}$, and let \mathbf{U} be a matrix of size $J \times I_{n}$
- The \boldsymbol{n}-mode matrix product of \mathcal{X} with $\mathbf{U}, \mathcal{X} \times_{n} \mathbf{U}$ is of size $I_{1} \times I_{2} \times \ldots \times I_{n-1} \times J \times I_{n+1} \times \ldots \times I_{N}$
$-\left(X \times{ }_{n} \mathbf{U}\right)_{i_{1} \cdots i_{n-1}, j i_{n+1} \cdots i_{N}}=\sum_{i_{n}=1}^{I_{n}} x_{i_{1} i_{2} \cdots i_{N}} u_{j i_{n}}$
- Each mode- n fibre is multiplied by the matrix \mathbf{U}
- In terms of unfold tensors: $\mathcal{Y}=\mathcal{X} \times_{n} \mathbf{U} \Longleftrightarrow \mathbf{Y}_{(n)}=\mathbf{U} \mathbf{X}_{(n)}$
- The \boldsymbol{n}-mode vector product is denoted $\mathcal{X} \bar{X}_{n} \mathbf{v}$
- The result is of order $N-1$
$-\left(X \bar{x}_{n} \mathbf{v}\right)_{i_{1} \cdots i_{n-1} i_{n+1} \cdots i_{N}}=\sum_{i_{n}=1}^{I_{n}} x_{i_{1} i_{2} \cdots i_{N}} v_{i_{n}}$
- Inner product between mode-n fibres and vector \mathbf{v}

Kronecker Matrix Product

- Element-per-matrix product
- n-by- m and j-by- k matrices give $n j$-by- $m k$ matrix

$$
\mathbf{A} \otimes \mathbf{B}=\left(\begin{array}{cccc}
\mathfrak{a}_{1,1} \mathbf{B} & \mathfrak{a}_{1,2} \mathbf{B} & \cdots & \mathfrak{a}_{1, m} \mathbf{B} \\
\mathbf{a}_{2,1} \mathbf{B} & \mathfrak{a}_{2,2} \mathbf{B} & \cdots & a_{2, m} \mathbf{B} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} \mathbf{B} & a_{n, 2} \mathbf{B} & \cdots & a_{n, m} \mathbf{B}
\end{array}\right)
$$

Khatri-Rao Matrix Product

- Element-per-column product
- Number of columns must match
- n-by- m and k-by- m matrices give $n k$-by- m matrix

$$
\mathbf{A} \odot \mathbf{B}=\left(\begin{array}{cccc}
a_{1,1} \mathbf{b}_{1} & a_{1,2} \mathbf{b}_{2} & \cdots & a_{1, \mathfrak{m}} \mathbf{b}_{\mathfrak{m}} \\
a_{2,1} \mathbf{b}_{1} & a_{2,2} \mathbf{b}_{2} & \cdots & a_{2, \mathfrak{m}} \mathbf{b}_{\mathfrak{m}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} \mathbf{b}_{1} & a_{n, 2} \mathbf{b}_{2} & \cdots & a_{n, m} \mathbf{b}_{\mathfrak{m}}
\end{array}\right)
$$

Hadamard Matrix Product

- The element-wise matrix product
- Two matrices of size n-by- m, resulting matrix of size n-by-m

$$
\mathbf{A} * \mathbf{B}=\left(\begin{array}{cccc}
a_{1,1} b_{1,1} & a_{1,2} b_{1,2} & \cdots & a_{1, \mathfrak{m}} b_{1, \mathfrak{m}} \\
a_{2,1} b_{2,1} & a_{2,2} b_{2,2} & \cdots & a_{2, \mathfrak{m}} b_{2, \mathfrak{m}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} b_{n, 1} & a_{n, 2} b_{n, 2} & \cdots & a_{n, m} b_{n, m}
\end{array}\right)
$$

Some identities

$$
\begin{aligned}
(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) & =\mathbf{A C} \otimes \mathbf{B D} \\
(\mathbf{A} \otimes \mathbf{B})^{\dagger} & =\mathbf{A}^{\dagger} \otimes \mathbf{B}^{\dagger} \\
\mathbf{A} \odot \mathbf{B} \odot \mathbf{C} & =(\mathbf{A} \odot \mathbf{B}) \odot \mathbf{C}=\mathbf{A} \odot(\mathbf{B} \odot \mathbf{C}) \\
(\mathbf{A} \odot \mathbf{B})^{T}(\mathbf{A} \odot \mathbf{B}) & =\mathbf{A}^{T} \mathbf{A} * \mathbf{B}^{T} \mathbf{B} \\
(\mathbf{A} \odot \mathbf{B})^{\dagger} & =\left(\left(\mathbf{A}^{T} \mathbf{A}\right) *\left(\mathbf{B}^{T} \mathbf{B}\right)\right)^{\dagger}(\mathbf{A} \odot \mathbf{B})^{T}
\end{aligned}
$$

\mathbf{A}^{\dagger} is the Moore-Penrose pseudo-inverse

Tensor Decompositions and Rank

- A matrix decomposition represents the given matrix as a product of two (or more) factor matrices
- The rank of a matrix \mathbf{M} is the
- Number of linearly independent rows (row rank)
- Number of linearly independent columns (column rank)
- Number of rank-1 matrices needed to be summed to get \mathbf{M}
(Schein rank)
- Rank-1 matrix is an outer product of two vectors
- They all are equivalent

Tensor Decompositions and Rank

- A matrix decomposition represents the given matrix as a product of two (or more) factor matrices
- The rank of a matrix \mathbf{M} is the
- Number of linearly independent rows (row rank)
- Number of linearly independent columns (column rank)
- Number of rank-1 matrices needed to be summed to get \mathbf{M} (Sche rank)
- Rank-1 matrix is an outer product of two vectors
- They all are equivalent

Rank-1 Tensors

Rank-1 Tensors

The CP Tensor Decomposition

More on CP

- The size of the CP factorization is the number of rank-1 tensors involved
- The factorization can also be written using N factor matrix (for order- N tensor)
- All column vectors are collected in one matrix, all row vectors in other, all tube vectors in third, etc.
- These matrices are typically called \mathbf{A}, \mathbf{B}, and \mathbf{C} for 3rd order tensors

CANDECOM, PARAFAC, ...

Name	Proposed by
Polyadic Form of a Tensor	Hitchcock, 1927 [105]
PARAFAC (Parallel Factors)	Harshman, 1970 [90]
CANDECOMP or CAND (Canonical decomposition)	Carroll and Chang, 1970 [38]
Topographic Components Model	Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC)	Kiers, 2000 [122]

Table 3.1: Some of the many names for the CP decomposition.

Another View on the CP

- Using matricization, we can re-write the CP decomposition
-One equation per mode

$$
\begin{aligned}
\mathbf{x}_{(1)} & =\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{\top} \\
\mathbf{x}_{(2)} & =\mathbf{B}(\mathbf{C} \odot \mathbf{A})^{\top} \\
\mathbf{x}_{(3)} & =\mathbf{C}(\mathbf{B} \odot \mathbf{A})^{\top}
\end{aligned}
$$

Solving CP: The ALS Approach 1. Fix \mathbf{B} and \mathbf{C} and solve \mathbf{A}
 2. Solve \mathbf{B} and \mathbf{C} similarly
 3. Repeat until convergence

Solving CP: The ALS Approach

1. Fix \mathbf{B} and \mathbf{C} and solve \mathbf{A}
2. Solve \mathbf{B} and \mathbf{C} similarly
3. Repeat until convergence

$$
\min _{\mathbf{A}}\left\|\mathbf{X}_{(1)}-\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{\mathrm{T}}\right\|_{\mathrm{F}}
$$

Solving CP: The ALS Approach

1. Fix \mathbf{B} and \mathbf{C} and solve \mathbf{A}
2. Solve \mathbf{B} and \mathbf{C} similarly
3. Repeat until convergence

$$
\begin{aligned}
& \min _{\mathbf{A}}\left\|\mathbf{X}_{(1)}-\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{\top}\right\|_{\mathbf{F}} \\
& \mathbf{A}=\mathbf{X}_{(1)}\left((\mathbf{C} \odot \mathbf{B})^{\mathrm{T}}\right)^{\dagger}
\end{aligned}
$$

Solving CP: The ALS Approach

1. Fix \mathbf{B} and \mathbf{C} and solve \mathbf{A}
2. Solve \mathbf{B} and \mathbf{C} similarly
3. Repeat until convergence

$$
\begin{aligned}
& \min _{\mathbf{A}}\left\|\mathbf{X}_{(1)}-\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{\mathrm{T}}\right\|_{\mathrm{F}} \\
& \mathbf{A}=\mathbf{X}_{(1)}\left((\mathbf{C} \odot \mathbf{B})^{\mathrm{T}}\right)^{\dagger} \\
& \mathbf{A}=\mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})\left(\mathbf{C}^{\top} \mathbf{C} * \mathbf{B}^{\top} \mathbf{B}\right)^{\dagger}
\end{aligned}
$$

Solving CP: The ALS Approach

1. Fix \mathbf{B} and \mathbf{C} and solve \mathbf{A}
2. Solve B and C similarly
3. Repeat until convergence

$$
\begin{aligned}
& \min _{\mathbf{A}}\left\|\mathbf{X}_{(1)}-\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{\top}\right\|_{F} \\
& \mathbf{A}=\mathbf{X}_{(1)}\left((\mathbf{C} \odot \mathbf{B})^{\top}\right)^{\dagger} \\
& \mathbf{A}=\mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B}) \underbrace{\text { R-by-R matrix }}_{\left.\mathbf{C}^{\top} \mathbf{C} * \mathbf{B}^{\top} \mathbf{B}\right)^{\dagger}}
\end{aligned}
$$

Tensor Rank

- The rank of a tensor is the minimum number of rank-1 tensors needed to represent the tensor exactly
- The CP decomposition of size R
-Generalizes the matrix Schein rank

Tensor Rank Oddities \#1

- The rank of a (real-valued) tensor is different over reals and over complex numbers.
- With reals, the rank can be larger than the largest dimension
$\bullet \operatorname{rank}(\chi) \leq \min \{I J, I K, J K\}$ for I-by- J-by- K tensor

$$
\begin{aligned}
\boldsymbol{X}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right) & \mathbf{A}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-\mathfrak{i} & \mathfrak{i}
\end{array}\right), \\
\mathbf{B} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
\mathfrak{i} & -\mathfrak{i}
\end{array}\right), \\
\mathbf{C} & =\left(\begin{array}{cc}
1 & 1 \\
\mathfrak{i} & -1
\end{array}\right)
\end{aligned}
$$

Tensor Rank Oddities \#1

- The rank of a (real-valued) tensor is different over reals and over complex numbers.
- With reals, the rank can be larger than the largest dimension
$\bullet \operatorname{rank}(X) \leq \min \{I J, I K, J K\}$ for I-by- J-by- K tensor

$$
\left.\begin{array}{rl}
\boldsymbol{X}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right) & \mathbf{A}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right), ~\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), ~ 子\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right), ~
$$

Tensor Rank Oddities \#1

- The rank of a (real-valued) tensor is different over reals and over complex numbers.
- With reals, the rank can be larger than the largest dimension

$$
\left.\left.\begin{array}{rl}
\boldsymbol{X}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right) & \mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right), \\
\mathbf{B} & =\left(\begin{array}{cc}
1 & 0
\end{array} 1\right. \\
0 & 1
\end{array}\right),\left\{\begin{array}{c}
1
\end{array}\right), \begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right),
$$

Tensor Rank Oddities \#1

- The rank of a (real-valued) tensor is different over reals and over complex numbers.
- With reals, the rank can be larger than the largest dimension
$\bullet \operatorname{rank}(X) \leq \min \{I J, I K, J K\}$ for I-by- J-by- K tensor

$$
\left.\begin{array}{rl}
\boldsymbol{X}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right) & \mathbf{A}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right), ~\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), ~ 子\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right), ~
$$

Tensor Rank Oddities \#2

- There are tensors of rank R that can be approximated arbitrarily well with tensors of rank R^{\prime} for some $R^{\prime}<$ R.
- That is, there are no best low-rank approximation for such tensors.
-Eckart-Young-theorem shows this is impossible with matrices.
- The smallest such R^{\prime} is called the border rank of the tensor.

Tensor Rank Oddities \#3

- The rank- R CP decomposition of a rank- R tensor is essentially unique under mild conditions.
-Essentially unique = only scaling and permuting are allowed.
-Does not contradict \#2, as this is the rank decomposition, not low-rank decomposition.
- Again, not true for matrices (unless orthogonality etc. is required).

The Tucker Tensor Decomposition

Tucker Decomposition

- Many degrees of freedom: often \mathbf{A}, \mathbf{B}, and \mathbf{C} are required to be orthogonal
- If $P=Q=R$ and core tensor \mathcal{G} is hyper-diagonal, then Tucker decomposition reduces to CP decomposition
- ALS-style methods are typically used
- The matricized forms are

$$
\begin{aligned}
& \mathbf{X}_{(1)}=\mathbf{A G}_{(1)}(\mathbf{C} \otimes \mathbf{B})^{T} \\
& \mathbf{X}_{(2)}=\mathbf{B G}_{(2)}(\mathbf{C} \otimes \mathbf{A})^{T} \\
& \mathbf{x}_{(3)}=\mathbf{C G}_{(3)}(\mathbf{B} \otimes \mathbf{A})^{T}
\end{aligned}
$$

Higher-Order SVD (HOSVD)

- One method to compute the Tucker decomposition
- Set \mathbf{A} as the leading P left singular vectors of $\mathbf{X}_{(1)}$
- Set \mathbf{B} as the leading Q left singular vectors of $\mathbf{X}_{(2)}$
- Set \mathbf{C} as the leading R left singular vectors of $\mathbf{X}_{(3)}$
- Set tensor \mathcal{G} as $\mathcal{X} \times{ }_{1} \mathbf{A}^{T} \times{ }_{2} \mathbf{B}^{T} \times{ }_{3} \mathbf{C}^{T}$

Comments

- Tensors generalize matrices
- Many matrix concepts generalize as well
- But some don't
- And some behave very differently
- Compared to matrix decomposition methods, tensor algorithms are in their youth
-Notwithstanding that Tucker did his work in 60's

