Organizational matters

- Remember to register for final exam in HISPOS
- Lecture on 27 November is cancelled
- Schedule is pushed one week down
- The DL for Topic IV's essay is still 12 February
- Essay topics are given two weeks before

Month	Day Lecture topic	Essay
October	16 Intro	Warm-up essay
	23 T I intro: Pattern set mining	
	30 T I.1: Tiling	Warm-up essay DL
November	6 T I.2: MDL-based itemset mining	T I essay, w-u feedback
	13 T II intro: Graph mining	
	20 T II. 1	T I essay DL
	27 No lecture	
December	4 T II. 2	T II essay, T I feedback
	11 No lecture	
	18 T III intro: Assessing the significance	T II essay DL
	25 No lecture, Christmas break	
January	1 No lecture, Christmas break	
	8 T III. 1	T III essay, T II feedback
	15 T III. 2	
	22 T IV intro	T III essay DL
	29 T IV. 1	T IV essay, T III feedback
February	5 T IV. 2	
	12	T IV essay DL
	19 Exam	

Topic I.1: Tiling Databases

Discrete Topics in Data Mining
Universität des Saarlandes, Saarbrücken
Winter Semester 2012/13

T I. 1 Tiling Databases

1. Background: Sets of Patterns
2. 0/1 Combinatorial Tiles
2.1. What \& Why
2.2. The Set Cover Problem
2.3. Finding the Tilings
3. Tiles as Density Estimates
3.1. Combinatorial and Geometric Tiles
3.2. An Algorithm for Finding Geometric Tiles
3.3. A Bit of Art History

Background: Sets of Patterns

- There are too many frequent itemsets and they contain repeated information
- Every subset of a frequent itemset is a frequent itemset
- Closed, maximal, and non-derivable itemsets try to remove the redundancy in information
- They might still yield to many almost-same itemsets
- Tiling addresses this problem by evaluating the set of itemsets with respect to the data they were found

Example

A frequent itemset

Example

Example

All
are closed land possibly maximal)

Example

All
are closed land possibly maximal)

Perhaps we want to remove the redundancy

Example

Perhaps we want to remove the redundancy

Example

Example

A rather good explanation of the full data

Perhaps we want to remove the redundancy

$0 / 1$ Combinatorial Tiles

- Let \boldsymbol{X} be an n-by- m binary matrix (e.g. transaction data)
- Let \boldsymbol{r} be a p-dimensional vector of row indices $\left(1 \leq \boldsymbol{r}_{i} \leq n\right)$
- Let \boldsymbol{c} be a q-dimensional vector of column indices ($1 \leq \boldsymbol{c}_{j} \leq m$)
- The p-by- q combinatorial submatrix induced by \boldsymbol{r} and \boldsymbol{c} is

$$
\mathbf{X}(\mathbf{r}, \mathbf{c})=\left(\begin{array}{ccccc}
x_{r_{1} c_{1}} & x_{r_{1} c_{2}} & x_{r_{1} c_{3}} & & x_{r_{1} c_{q}} \\
x_{r_{2}} c_{1} & x_{r_{2} c_{2}} & x_{r_{2}} c_{3} & \cdots & x_{r_{2} c_{q}} \\
x_{r_{3} c_{1}} & x_{r_{3} c_{2}} & x_{r_{3} c_{3}} & & x_{r_{3} c_{q}} \\
& \vdots & & \ddots & \vdots \\
x_{r_{p} c_{1}} & x_{r_{p} c_{2}} & x_{r_{p} c_{3}} & \cdots & x_{r_{p} c_{q}}
\end{array}\right)
$$

$-\boldsymbol{X}(r, c)$ is monochromatic if all of its values have the same value (0 or 1 for binary matrices)

- If $\boldsymbol{X}(\boldsymbol{r}, \boldsymbol{c})$ is monochromatic 1 , it (and ($\boldsymbol{r}, \boldsymbol{c}$) pair) is called a combinatorial tile

Tiling problems

- Minimum tiling. Given \boldsymbol{X}, find the least number of tiles $(\boldsymbol{r}, \boldsymbol{c})$ such that
-For all (i, j) s.t. $x_{i j}=1$, there exists at least one pair $(\boldsymbol{r}, \boldsymbol{c})$ such that $i \in \boldsymbol{r}$ and $j \in \boldsymbol{c}$ (i.e. $x_{i j} \in \boldsymbol{X}(\boldsymbol{r}, \boldsymbol{c})$)
$\bullet i \in r$ if exists j s.t. $r_{j}=i$
- Maximum \boldsymbol{k}-tiling. Given \boldsymbol{X} and integer k, find k tiles $(\boldsymbol{r}, \boldsymbol{c})$ such that
- The number of elements $x_{i j}=1$ that do belong in at least one $\boldsymbol{X}(\boldsymbol{r}, \boldsymbol{c})$ is maximized

Example

1	0	1	1	0	1	0
1	1	0	1	1	0	0
1	1	1	1	1	1	1
0	1	0	1	1	0	0
1	1	1	1	0	1	0
0	1	0	1	1	1	1

Example

1	0	1	1	0	1	0
1	1	0	1	1	0	0
1	1	1	1	1	1	1
0	1	0	1	1	0	0
1	1	1	1	0	1	0
0	1	0	1	1	1	1

Example

1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1
0	1	0	1	1	0
1	1	1	1	0	1
0	1	0	1	1	1

Example

1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1
0	1	0	1	1	0
1	1	1	1	0	1
1	0	0			
0	1	0	1	1	1

Example

1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1
0	1	0	1	1	0
	0				
1	1	1	1	0	1
0	1	0	1	1	1

Example

1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1
0	1	0	1	1	0
1	0				
1	1	1	1	0	1
0	1	0	1	1	1

Tiling and itemsets

- Each tile defines an itemset and a set of transactions where the itemset appears
- Minimum tiling: each recorded transaction-item pair must appear in some tile
-Maximum k-tiling: maximize the number of transactionitem pairs appearing on selected tiles
- Itemsets are local patterns, but tiling is global

The Set Cover Problem

- A set system is a pair (U, S), where U (universe) is a (finite) set of elements and S a collection of subsets of $U, S \subseteq 2^{U}$, such that $\bigcup_{S \in \mathcal{S}} S=U$
- Set Cover. Given a set system (U, S), find the smallest subcollection $C \subseteq S$ such that $\bigcup_{C \in C} C=U$
- Max \boldsymbol{k}-Cover. Given (U, S) and an integer k, find k sets of S (in collection C) such that $\left|\cup_{C \in C} C\right|$ is maximized.

Algorithm for Set Cover

1. while U is not empty
2. Select the $S \in S$ that has largest $|S \cap U|$
3. Add S to C
4. Set $U \leftarrow U \backslash S$

5. return C

- This greedy algorithm achieves $\log (n)$ approximation for the Set Cover
- This is best possible unless $\mathrm{P}=\mathrm{NP}$
- Stopping after k sets gives $\mathrm{e} /(\mathrm{e}-1)$ approximation of Max k-Cover

From Set Cover to Tiling

- We can use the set cover algorithm if we can reduce the tiling problem to a set covering problem
-Let \boldsymbol{X} be the $0 / 1$ data matrix we want to tile -Let U have one element for each 1 in $\boldsymbol{X}, U=\left\{u_{i j}: x_{i j}=1\right\}$ -Let S have one set for each possible tile in \boldsymbol{X}
- For each $S \in S$, we have row and column index vectors \boldsymbol{r} and \boldsymbol{c} such that $\boldsymbol{X}(\boldsymbol{r}, \boldsymbol{c})$ is monochromatic 1
- Then $S=\left\{u_{i j}: i \in r\right.$ and $\left.j \in c\right\}$
- Now an optimum set covering gives us an optimum minimum tiling
- Same for max k-covering and maximum k-tiling

Job Done?

- The number of possible tiles is exponential with respect to the size of the data base
-Generating the set system takes exponential time
-Running the algorithm takes exponential time
- And if I'm going to spend exponential time, I can as well just find the optimum solution
- How to solve this?
- Reduce the number of tiles you consider
- Find the tile to add without having to know all the tiles explicitly

Reducing the Number of Tiles

- We don't need to consider all possible tiles
- If T_{1} and T_{2} are tiles such that $T_{1} \subset T_{2}$, we only need to consider T_{2}
- We only need to consider maximal tiles (that are not subtiles of any other tile)
- Maximal tiles are those induced by closed itemsets
- Adding new rows would require us to remove columns and vice versa
- But there still are (potentially) exponential number of closed itemset...

Considering only Implicit Tiles

- Assume an oracle that, given a binary matrix and a tiling thereof, returns in polynomial time the tile that covers most of the 1 s in the matrix not yet covered by the given tiling
- If we have such oracle, we can execute the greedy algorithm in polynomial time
- If we don't have the oracle, but we can approximate the tile within some factor $R(n)$, we can approximate the set cover within $R(n) \log (n)$

A Practical Algorithm

- Replace the oracle with a large tile mining algorithm that takes into account the already-covered area
-Finds only maximal tiles (closed itemsets)
- Similar to ECLAT \& CHARM
- Cannot use downwards closedness property directly
- Area of a tile is not downwards closed
- Can still compute upper bounds on the maximum area of a super-tile of the given tile
- Details left for reader
- Gives a practical algorithm for finding the minimum tiling and maximum k-tiling

Tiles as Density Estimates

- A tile must be monochromatic 1
-But real-world data often has noise
- Noise breaks tiles
- Areas with lots of zeros can be interesting, as well - And areas of zeros within areas of ones
- We can consider tiles as areas of certain density
-Density should be different in neighbouring areas
- Within tiles, there can be sub-areas of different density
- These are called density tiles
- Thus density tiles can be seen as density patterns in the data

Example

Gionis, Mannila \& Seppänen 2004

Example

Gionis, Mannila \& Seppänen 2004

Example

Very sparse area

Gionis, Mannila \& Seppänen 2004

Geometric Tiles

- There are $2^{n} 2^{m}$ possible combinatorial submatrices in an n-by- m matrix
- If we look for density, we cannot look just monochromatic areas
- A geometric (density) tile is a tile with continuous row and column indices
- It can be described given two corners ${ }^{20}$
- Or specific corner plus width and height ${ }_{150}$ - Only $n^{2} m^{2}$ possible
- We also allow a hierarchy of tiles

- A sub-tile must be completely within its parent

Mining the Geometric Density Tiles

- The goal for density tile mining is non-obvious
- A single density tile can cover the whole data
- What is the error induced by a tiling?
-How many tiles? How many sub-tiles?
- General idea: use the tiling to give a likelihood of the data
-Likelihood is the probability of the data given the density tiling
- Zero on a dense tile is improbable, as is one on a sparse tile
- Bound the complexity using some model-order selection method

The Likelihood of the Data

- Let $x_{i j}$ be an element of the data and τ a tile with density p
-If τ has no sub-tile that covers $x_{i j}$, then the likelihood $q(\tau ; i, j)$ of $x_{i j}$ is p
-Otherwise, if $x_{i j} \in \tau^{\prime} \subset \tau$, likelihood of $x_{i j}$ is computed with tile τ '
- Most specific tile defines the likelihood
- The likelihood of the whole data given τ is

$$
L(\mathbf{X} \mid \tau)=\prod_{(i, j) \in \tau} q(\tau ; i, j)^{x_{i j}}(1-q(\tau ; i, j))^{1-x_{i j}}
$$

- The likelihood of the whole data is computed using a root tile

How Many Tiles?

- We can get perfect likelihood
-But the model would be too complex
- Balance between the complexity of the model and the likelihood
- For example, Bayesian Information Criterion (BIC)
- Minimize $k \times \log (n m)-2 \log (\mathrm{~L}(\boldsymbol{X} \mid \tau))$
- k is the number of sub-tiles
- The first part explains how complex tiling we have and the second part is twice the log likelihood

How to Find Tilings

- Randomized greedy algorithm for one tile:
- Draw a random rectangle
$(a, b) \times(c, d)=\{(i, j): a \leq i \leq b$ and $c \leq j \leq d\}$
- Try to expand and shrink it to all directions
- E.g. $(a, b) \times(c, d+1),(a, b) \times(c, d+2),(a, b) \times(c, d+3), \ldots$
- Out of all tried rectangles, select the one with highest likelihood
- If this is better than the likelihood of the original rectangle, choose this as a new original rectangle, and start expanding and shrinking it
- Stop when the likelihood cannot be improved using expansions or shrinks
- For tilings, find tiles one-by-one and stop when BIC stops decreasing

Stijl - An Algorithm and a Movement

Piet Mondrian: Composition II in Red, Blue, and Yellow, 1930

Tiles That Overlap Within Parents

No overlap

Overlap
within
parent

Tatti \& Vreeken 2012

Tile Trees

Tatti \& Vreeken 2012

The Minimum Description Length

 Principle (MDL)- Another tool for model (order) selection
- The model that compresses the data best is the best
- Two-part MDL: To compress the data, we need to explain the model and the data given the model
$-L(M)+L(D \mid M)$
-Here: model is the tiling and we need to explain how to reconstruct the data given the tiling
- The more homogeneous the tiles, the easier the latter part
- More on MDL next week...

The Stijl Algorithm

- Goal: Find a tree of tiles (where tiles can overlap within their parent) that minimizes the description length of the data
- A greedy algorithm that adds tiles one-by-one
- Can find a single, optimal tile to add in $O(n m \min (n, m))$
- Uses MDL to decide the size of the tree
- Based on a linear-time algorithm to decide the optimal tile given the columns of it

From Geometric to Combinatorial

- We only know how to find geometric density tiles - What about combinatorial density tiles?
- Given a combinatorial tile, we can always re-order rows and columns to yield geometric tile
- Not always possible for all tiles in a tiling simultaneously
- We can try to find an ordering a priori, and then find the geometric tiles in it

Spectral Ordering

- Order the rows of \boldsymbol{X} as follows:
-Compute $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{X}^{T}$ (symmetric and positive semidefinite)
- Let \boldsymbol{D} be a diagonal matrix with the sums of \boldsymbol{Y} 's rows on its diagonal
- Let \boldsymbol{L} be the Laplacian of $\boldsymbol{Y}: \boldsymbol{L}=\boldsymbol{D}-\boldsymbol{Y}$
- Compute the second eigenvector of \boldsymbol{L} (the Fiedler vector) \boldsymbol{f}
- Intuitively, similar rows have similar values in f
- Order the rows based on their values in \boldsymbol{f}
- Columns are ordered analogously
- Here, similarity is measured using dot product - Other similarity measures are possible

Gionis, Mannila \& Seppänen 2004

References

- Geerts, F., Goethals, B. \& Mielikäinen, T., 2004. Tiling Databases. In Proceedings of the DS 2004, pp. 77-122
- Gionis, A., Mannila, H., \& Seppänen, J.K., 2004. Geometric and Combinatorial Tiles in 0-1 Data. In Proceedings of the PKDD 2004, pp. 173-184
- Tatti, N., \& Vreeken, J., 2012. Discovering Descriptive Tile Trees by Mining Optimal Geometric Subtiles. In Proceedings of the ECML PKDD 2012, pp. 9-24

