

Name:					
Matriculation Number:					
Tutorial Group:	Α□	ВП	$C \square$	D 🗆	ЕΠ

Question:	1 (5 Points)	2 (5 Points)	3 (5 Points)	4 (5 Points)	Total (20 points)
Score:					

General instructions:

- The written test contains $\frac{4 \text{ questions}}{4 \text{ earn is } 20}$ and is scheduled for $\frac{45 \text{ minutes}}{45 \text{ minutes}}$. The maximum
- Please verify if your exam consists of 12 pages with 4 questions printed legibly, else contact the examiner immediately.
- No electronic devices (calculator, notebook, tablet, PDA, cell phone) are allowed.
- Answers without sufficient details are void (e.g.: you can't just say "yes" or "no" as the answer).
- Last page consists of material that you may use to solve the questions. You may detach the last page for your convenience.
- You will be provided additional working sheets if necessary. Make sure to return them along with your solution sheet.
- Please provide your ID card when asked by the examiner.
- Please fill in name, matriculation number (student registration number) and tutor group in the form above and return the solution sheets into the provided box.
- Please sign below.

Student's Signature

LINEAR ALGEBRA

Problem 1. Consider the following matrix A,

$$A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \, .$$

a) Consider the first and second column of A,

$$\vec{a}_1 = (1/\sqrt{2}, 1/\sqrt{2})^T$$

 $\vec{a}_2 = (1/\sqrt{2}, -1/\sqrt{2})^T$

Compute the Euclidean (that is, L_2) norm of these two vectors. [2 points]

- b) Compute the dot product $\vec{a}_1 \cdot \vec{a}_2$. [1 point]
- c) Is A invertible? If yes, give its inverse. If not, explain why. [2 points]
- d) Let I be the 2-by-2 identity matrix and let

 $\vec{v} = (1,0)^T$.

Compute

$$AIAII(A^T)^2 IAIIAIA^T \vec{v}$$
.

[1 point]

Problem 2. Let A be a 500-by-100 matrix and let $A = U\Sigma V^T$ be its SVD.

- a) What are the sizes (numbers of rows and columns) of U, Σ , and V? [1 point]
- b) How many non-zeros can matrix Σ have at most? [1 point]
- c) Is matrix A invertible? Explain why/why not. [1 point]
- d) Assume that rank(A) = 100 and consider the matrix $\tilde{A}^+ = (A^T A)^{-1} A^T$ (you can assume that the inverse exists). Prove that \tilde{A}^+ is the pseudo-inverse of A. You can use the fact that $V\Sigma^+U^T$ is the pseudo-inverse of A, that $(XY)^T = Y^T X^T$ for all matrices X and Y for which the product is well-defined, and that $(XY)^{-1} = Y^{-1}X^{-1}$ if X and Y are invertible. [2 points]

PROBABILITY THEORY

Problem 3. Let X and Y be two discrete random variables such that X takes values from $\{1, 2, 3, 4\}$ and Y takes values from $\{3, 6, 12\}$. Let their joint mass function $f_{X,Y}$ be as follows:

		1	2	3	4
	3	1/6	0	1/12	1/12
Y	6	1/6	1/6	1/12	1/12
	12	0	0	1/12	1/12

- a) What is the marginal distribution of Y? [1 point]
- b) What is the expected value of Y, E[Y]? [1 point]
- c) What is the conditional expectation of Y given X, E[Y | X]? [2 points]
- d) Let A be a random variable with E[A] = 4 and let B be a random variable with E[B] = 6. Let C be a random variable defined as 2(A + B) 20. What is E[C]? [1 point]

STATISTICAL INFERENCE

Problem 4. Suppose we have the following sample of 20 response times from a search engine

 $X = \langle 10, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 2, 3, 4, 1, 5, 8, 2, 10, 5, 7, 3, 4, 6, 5 \rangle$

- (a) What are the sample mean \bar{X} and the sample variance S^2 ? [1 point]
- (b) What is the 95% confidence interval of \bar{X} (assuming $\sigma^2 = 1.44$)? [2 points]
- (c) Is there strong evidence to reject the null hypothesis $H_0: \mu = 5.5$ (assuming $\hat{se} = 0.25$)? [2 points]

ADDITIONAL MATERIAL

Linear algebra

- Identity matrix: *n*-by-*n* matrix *I* such that $I_{ij} = 1$ iff i = j and $I_{ij} = 0$ otherwise
- Product with identity matrix: AI = IA = A for all *n*-by-*n* matrices A
- Matrix inverse: $A^{-1}A = AA^{-1} = I$
- Transpose identities: $(A^T)^T = A$ for all A; $(AB)^T = B^T A^T$ when the product is well-defined
- Inverse of a product: $(AB)^{-1} = B^{-1}A^{-1}$ if A and B are invertible
- Inverse of orthogonal matrices: $A^T = A^{-1}$ iff A is orthogonal

Probability & Statistics:

- Bayes' Theorem: $\Pr[A|B] = \frac{\Pr[B|A] \Pr[A]}{\Pr[B]}$
- Law of Total Probability: $\Pr[B] = \sum_{i=1}^{n} \Pr[B|A_i] \Pr[A_i]$ for disjoint events A_i with $\sum_{i=1}^{n} \Pr[A_i] = 1$
- Expectation: $\mathbf{E}[X] = \sum_{k=1}^{n} k f_X(k)$ and Variance: $\mathbf{Var}[X] = \mathbf{E}[X^2] \mathbf{E}[X]^2$ for a discrete RV X with density function f_X
- Markov inequality: $\Pr[X \ge t] \le \frac{\mathbf{E}[X]}{t}$ for $t \ge 0$ and a non-neg. RV X
- Chebyshev inequality: $\Pr[|X \mathbf{E}[X]| \ge t] \le \frac{\mathbf{Var}[X]}{t^2}$ for t > 0 and a non-neg. RV X
- Sample Mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and Sample Variance: $S_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$
- For an estimator $\hat{\theta}$ of parameter θ over i.i.d. samples $\{X_1, X_2, ..., X_i, ..., X_n\}$,
 - If $\mathbf{E}[X_i] = \mu$, then $\mathbf{E}[\hat{\theta}_n] = \mu$
 - If $\operatorname{Var}[X_i] = \sigma^2$, then $\operatorname{Var}[\hat{\theta}_n] = \frac{\sigma^2}{n}$
 - Standard Error: $se(\hat{\theta}) = \sqrt{\mathbf{Var}[\hat{\theta}_n]}$
 - Mean Squared Error: $MSE[\hat{\theta}_n] = (\mathbf{E}[\hat{\theta}_n] \theta)^2 + \mathbf{Var}[\hat{\theta}_n])$

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

	_					· · · · ·				-						-111				_					- 11	_											
X.005	7.879	10.597	12.838	14.860	16.750	18.548	20.278	21.955	23.589	25.188	26.757	28.300	29.819	31.319	32.801	34.267	35.718	37.156	38.582	39.997	41.401	42.796	44.181	45.559	46.928	48.290	49.645	50.993	52.336	53.672	66.766	79.490	91.952	104.215	116.321	128.299	140.169
X.010	6.635	9.210	11.345	13.277	15.086	16.812	18.475	20.090	21.666	23.209	24.725	26.217	27.688	29.141	30.578	32.000	33.409	34.805	36.191	37.566	38.932	40.289	41.638	42.980	44.314	45.642	46.963	48.278	49.588	50.892	63.691	76.154	88.379	100.425	112.329	124.116	135.807
$\chi^{2}_{.025}$	5.024	7.378	9.348	11.143	12.833	14.449	16.013	17.535	19.023	20.483	21.920	23.337	24.736	26.119	27.488	28.845	30.191	31.526	32.852	34.170	35.479	36.781	38.076	39.364	40.646	41.923	43.195	44.461	45.722	46.979	59.342	71.420	83.298	95.023	106.629	118.136	129.561
$\chi^{2}_{.050}$	3.841	5.991	7.815	9.488	11.070	12.592	14.067	15.507	16.919	18.307	19.675	21.026	22.362	23.685	24.996	26.296	27.587	28.869	30.144	31.410	32.671	33.924	35.172	36.415	37.652	38.885	40.113	41.337	42.557	43.773	55.758	67.505	79.082	90.531	101.879	113.145	124.342
$\chi^{2}_{.100}$	2.706	4.605	6.251	677.7	9.236	10.645	12.017	13.362	14.684	15.987	17.275	18.549	19.812	21.064	22.307	23.542	24.769	25.989	27.204	28.412	29.615	30.813	32.007	33.196	34.382	35.563	36.741	37.916	39.087	40.256	51.805	63.167	74.397	85.527	96.578	107.565	118.498
$\chi^{2}_{.900}$	0.016	0.211	0.584	1.064	1.610	2.204	2.833	3.490	4.168	4.865	5.578	6.304	7.042	7.790	8.547	9.312	10.085	10.865	11.651	12.443	13.240	14.041	14.848	15.659	16.473	17.292	18.114	18.939	19.768	20.599	29.051	37.689	46.459	55.329	64.278	73.291	82.358
$\chi^{2}_{.950}$	0.004	0.103	0.352	0.711	1.145	1.635	2.167	2.733	3.325	3.940	4.575	5.226	5.892	6.571	7.261	7.962	8.672	9.390	10.117	10.851	11.591	12.338	13.091	13.848	14.611	15.379	16.151	16.928	17.708	18.493	26.509	34.764	43.188	51.739	60.391	69.126	77.929
$\chi^{2}_{.975}$	0.001	0.051	0.216	0.484	0.831	1.237	1.690	2.180	2.700	3.247	3.816	4.404	5.009	5.629	6.262	6.908	7.564	8.231	8.907	9.591	10.283	10.982	11.689	12.401	13.120	13.844	14.573	15.308	16.047	16.791	24.433	32.357	40.482	48.758	57.153	65.647	74.222
$\chi^{2}_{.990}$	0.000	0.020	0.115	0.297	0.554	0.872	1.239	1.646	2.088	2.558	3.053	3.571	4.107	4.660	5.229	5.812	6.408	7.015	7.633	8.260	8.897	9.542	10.196	10.856	11.524	12.198	12.879	13.565	14.256	14.953	22.164	29.707	37.485	45.442	53.540	61.754	70.065
$\chi^{2}_{.995}$	0.000	0.010	0.072	0.207	0.412	0.676	0.989	1.344	1.735	2.156	2.603	3.074	3.565	4.075	4.601	5.142	5.697	6.265	6.844	7.434	8.034	8.643	9.260	9.886	10.520	11.160	11.808	12.461	13.121	13.787	20.707	27.991	35.534	43.275	51.172	59.196	67.328
df	1	2	e,	4	n	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	40	50	09	02	80	06	100

0.6517 0.7549 0.8830 0.9177 0.9441 0.9633 19767 0.9857 0.9916 0.5753 0.7224 0.7852 0.8389 0.9015 0.9319 0.9706 0.9890 0.9952 0.9974 0.9986 0.9993 0.09 0.6879 0.8133 0.8621 0.9545 0.9817 0.9936 3666.0 1666.0 0.6141 0.9964 0.9981 0666.0 0.9998 0.08 0.5714 0.6480 0.6844 0.7190 0.7517 0.7823 0.8106 0.8365 0.8599 0.8810 79997 0.9162 0.9306 0.9429 0.9535 0.9625 0.9699 0.9761 0.9812 0.9854 0.9887 0.9913 0.9934 0.9951 0.9963 0.9973 0.9980 0.9986 0.9990 0.9993 3666.0 0.9996 0.9997 0.9418 0.9756 0.5279 0.5675 0.6443 0.7157 0.8078 0.8340 0.8790 0.8980 0.9147 0.9292 0.9525 0.9616 0.9693 0.9808 0.9850 0.9911 0.9949 0.9972 0.9979 0.9985 0.9992 0.99966 0.6064 0.7486 0.7794 0.9995 19997 0.6808 0.8577 0.9932 0.9962 0.07 0.9884 0.9989 0.9750 0.5239 0.5636 0.6406 0.6772 0.7123 0.7764 0.8315 0.8770 0.8962 0.9131 0.9279 0.9406 0.9515 0.9608 0.9686 0.9803 0.9846 0.9909 0.9948 0.9979 0.9985 0.9992 0.99966 0.6026 0.7454 0.8051 0.8554 0.9881 0.9931 0.9961 0.9971 0.9994 79997 0.9989 0.05 0.6368 0.9115 0.9394 0.9678 0.9744 0.5596 0.6736 0.7088 0.7734 0.8023 0.8289 0.8749 0.8944 0.9265 0.9505 0.9599 0.9798 0.9842 0.9906 0.9946 0966.0 0.9970 8/66.0 0.9984 0.9992 0.9994 9666.0 0.5987 0.7422 0.8531 0.9878 0.9929 0.9989 79997 0.04 0.6331 0.6700 0.8729 0.9382 0.9495 0.5557 0.5948 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8925 0.9099 0.9251 0.9591 0.9671 9679.0 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9969 1799.0 0.9984 0.9992 0.9994 9666.0 1666.0 0.9959 0.9988 0.5517 0.5910 0.03 0.6293 0.6664 0.7019 0.7673 0.7967 0.8238 0.8485 0.8708 0.8907 0.9082 0.9236 0.9370 0.9484 0.9582 0.9664 0.9732 0.9788 0.9834 0.9901 0.9925 0.9943 739957 0.9968 0.9983 0.9994 0.9996 0.7357 7799.0 0.9991 79997 0.9871 0.9988 0.02 0.5478 0.6255 0.6985 0.7642 0.7939 0.8212 0.8686 0.9357 0.9573 0.9656 0.9726 0.9783 0.9830 9266.0 0.9982 7666.0 0.6628 0.7324 0.8888 0.9066 0.9222 0.9474 0.9898 0.9922 0.9956 0.9967 19987 0.8461 0.9868 0.9941 0.9991 0.9994 0.7910 0.9345 0.9649 0.9719 0.01 0.5438 0.6217 0.6950 0.8186 0.8438 0.8665 0.8869 0.9049 0.9463 0.9778 0.9826 0.9896 0.9920 0.9940 0.99666 0.9975 0.9982 3666.0 0.6591 0.7611 0.9207 0.9564 0.9864 0.9993 0.7291 0.9955 0.9991 0.9997 0.9987 0.9332 0.9713 0.6915 0.7580 0.8159 0.8413 0.8643 0.9032 0.9192 0.9452 0.9938 0.9953 0.9965 0666.0 0.5000 0.5398 0.5793 0.6179 0.6554 0.9554 0.9641 0.9772 0.9861 0.9981 0.9993 0.9995 0.7257 0.7881 0.8849 0.9821 0.9893 0.9918 0.9974 79997 0.00 0.9987 0.1 2.9 3.0 1.5 1.9 21 22 23 23 24 26 26 2.7 3.1 3.2 0.3 0.5 1.7 3.3 0.8 0.9 1.3 1.4 1.6 3.4 0.0 0.2 0.7 1.0 1.1 12

Standard Normal Distribution $-\infty$ to z

Numerical entries represent the probability that a standard normal random variable is between $-\infty$ and *z* where $z = (x - \mu)/\sigma$.