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0.1. Organization
๏ Lectures on Monday 10:15–11:45 in R024/E1.4 (MPI-INF) 

๏ Tutorials on Monday 14:15–15:45 in R023/E1.4 (MPI-INF)  

๏ Lecturer: Klaus Berberich (kberberi@mpi-inf.mpg.de) 
๏ Office hours on Monday 13:00–14:00 (or appointment by e-mail) 

๏ Tutor: Dhruv Gupta (dhgupta@mpi-inf.mpg.de)  

๏ Prerequisite: Successful participation in the core course 
Information Retrieval & Data Mining or equivalent one
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Background Literature
๏ C. D. Manning, P. Raghavan, H. Schütze,  

Introduction to Information Retrieval, 
Cambridge University Press, 2008 
http://www.informationretrieval.org 

๏ S. Büttcher, C. L. A. Clarke, G. V. Cormack,  
Information Retrieval,  
MIT Press, 2010 

๏ R. Baeza-Yates and R. Ribeiro-Neto, 
Modern Information Retrieval, 
Addison-Wesley, 2011
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Agenda (2014)
1. Social Media 

2. Recommender Systems 

3. Semantics 

4. Personalization 

5. Efficiency & Scalability 

6. Novelty & Diversity
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Agenda (2015)
7. Learning to Rank 

8. Dynamics & Age 

9. Mining & Organization 

10. Evaluation
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Exercise Sheets & Tutorials
๏ Biweekly exercise sheets 

๏ six exercise sheets each with up to six problems 

๏ handed out during the lecture on Monday 

๏ due by Thursday 11:59 PM of the following week 

๏ submit electronically as PDF to atir2014@mpi-inf.mpg.de 
(best: typeset using LaTeX, worst: scans of your handwriting) 

๏ Biweekly tutorials 
๏ on Mondays after due dates 

๏ we’ll grade your solutions as (P)resentable, (S)erious, (F)ail 

๏ no example solutions
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Obtaining 6 ECTS
๏ Submit serious or better solutions to at least 50% of problems 

๏ Present solutions in tutorial 
๏ at least once during the semester 

๏ additional presentations score you bonus points  
(one grade per bonus point, at most three, at most one per session) 

๏ Pass oral exam at the end of the semester
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Registration & Password
๏ You’ll have to register for this course and the exam in HISPOS 

๏ Please let us also know that you attend this course and send an 
e-mail with subject “Registration” to atir2014@mpi-inf.mpg.de 
๏ Full name 

๏ Student number 

๏ Preferred e-mail address  

๏ Some materials (e.g., papers and data) will be made available in a 
password-protected area on the course website 
๏ Username: atir2014 / Password: < first eight digits of π >
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Questions? Ideas? Requests?
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0.2. Documents & Queries
๏ Pre-processing of documents and queries typically includes 

๏ tokenization (e.g., splitting them up at white spaces and hyphens) 

๏ stemming or lemmatization (to group variants of the same word) 

๏ stopword removal (to get rid of words that bear little information) 

๏ This results in a bag (or sequence) of indexable terms
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0.3. Retrieval Models
๏ Retrieval model defines for a given document collection D 

and a query q which documents to return in which order 
๏ Boolean retrieval 

๏ Probabilistic retrieval models (e.g., binary independence model) 

๏ Vector space model with tf.idf term weighting 

๏ Language models 

๏ Latent topic models (e.g., LSI, pLSI, LDA)
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Boolean Retrieval
๏ Boolean variables indicate presence/absence of query terms 

๏ Boolean operators AND, OR, and NOT 

๏ Boolean queries are arbitrary compositions of those, e.g.: 
๏ brutus AND caesar AND NOT calpurnia 

๏ NOT ((duncan AND macbeth) OR (capulet AND montague)) 

๏ … 

๏ Query result is the (unordered) set of documents satisfying 
(i.e., “matching”) the query 

๏ Extensions of Boolean retrieval (e.g., proximity, wildcards, fields)  
with rudimentary ranking (e.g., weighted matches) exist
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Vector Space Model
๏ Vector space model considers queries and documents as 

vectors in a common high-dimensional vector space 

๏ Cosine similarity between two vectors q and d 
is the cosine of the angle between them
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tf.idf
๏ How to set the components of query and document vectors? 

๏ Intuitions behind tf.idf term weighting: 
๏ documents should profit if they contain a query term more often 

๏ query terms should be weighted (e.g., snowden documentation) 

๏ Term frequency tf(v,d) – # occurrences of term v in document d 

๏ Document frequency df(v) – # documents containing term v

๏ Components of document vectors set as  
 

๏ Components of query vectors set as binary indicators

15
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Language Models
๏ Language model describes the probabilistic generation of 

elements from a formal language (e.g., sequences of words) 

๏ Documents and queries can be seen as samples from a 
language model and be used to estimate its parameters
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Smoothing
๏ Terms that do not occur in a document have zero probability  

of being generated by the estimated language model  

๏ Parameter estimation from a single document or query  
bears the risk of overfitting to this very limited sample  

๏ Smoothing methods estimate parameters considering the entire 
document collection as a background model
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Smoothing
๏ Jelinek-Mercer smoothing 

๏ Dirichlet smoothing 
 
 
 

๏ Smoothing eliminates zero probabilities and introduces a 
relative term weighting (idf-like effect) since more common 
terms now have higher probability for all documents
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Query Likelihood vs. Divergence
๏ Query-likelihood approaches rank documents according to the 

probability that their language model generates the query  
 
 
 

๏ Divergence-based approaches rank according to the Kullback-
Leibler divergence between the query language model and 
language models estimate from documents
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0.4. Link Analysis
๏ Link analysis methods consider the Web’s hyperlink graph  

to determine characteristics of individual web pages  
 
 
 
 
 
 
 
 
 

๏ They can also be applied to graph structures obtained from other 
kinds of data (e.g., social networks and word co-occurrence 
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PageRank
๏ PageRank (by Google) is based on the following random walk 

๏ jump to a random vertex ( 1 / |V| ) in the graph with probability ε 

๏ follow a random outgoing edge ( 1 / out(v) ) with probability (1-ε) 
 
 
 

๏ PageRank score p(v) of vertex v is a measure of popularity  
and corresponds to its stationary visiting probability
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PageRank
๏ PageRank scores correspond to components of the dominant 

Eigenvector π of the transition probability matrix P which can 
be computed using the power-iteration method 
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HITS
๏ Hyperlink-Inducted Topics Search (HITS) operates on a subgraph 

of the Web induced by a keyword query and considers 
๏ hubs as vertices pointing to good authorities 

๏ authorities as vertices pointed to by good hubs 

๏ Hub score h(u) and authority score a(v) defined as 

๏ Hub vector h and authority vector a are Eigenvectors of the 
co-citation matrix AAT and co-reference matrix ATA 

23

h(u) /
X

(u,v)2E

a(v) a(v) /
X

(u,v)2E

h(u)

h = ↵�AAT h a = ↵�ATAa



Advanced Topics in Information Retrieval / Introduction

0.5. Indexing & Query Processing
๏ Retrieval models define which documents to return for a query  

but not how they can be identified efficiently 

๏ Index structures are an essential building block for IR systems;  
variants of the inverted index are by far most common 

๏ Query processing methods operate on these index structures 
๏ holistic query processing methods determine all query results  

(e.g., term-at-a-time, document-at-a-time) 

๏ top-k query processing methods determine the best k query results  
(e.g., WAND, BMW, Fagin’s TA & NRA)
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Inverted Index
๏ Inverted index as widely used index structure in IR consists of 

๏ dictionary mapping terms to term identifiers and statistics (e.g., df) 

๏ posting list for every term recording details about its occurrences 

๏ Posting lists can be document- or score-ordered and be 
equipped with additional structure (e.g., to support skipping) 

๏ Postings contain a document identifier plus additional payloads  
(e.g., term frequency, tf.idf score contribution, term offsets)
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Posting-List Compression
๏ It is often faster to read and decompress data, both from main 

memory and secondary storage, than to read it uncompressed 

๏ Posting lists of an inverted index are typically compressed 
๏ delta encoding for sequences of non-decreasing integers 

(e.g., document identifiers or term offsets) 
 

๏ variable-byte encoding (aka. 7-bit encoding) represents integers (e.g., 
deltas of term offsets) as sequences of 1 continuation + 7 data bits

26
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Term-at-a-Time
๏ Processes posting lists for query terms ⟨ q1,…,qm ⟩ one at a time 

๏ Maintains an accumulator for each document seen; after 
processing the first k query terms this corresponds to 

๏ Main memory proportional to number of accumulators 

๏ Top-k result determined at the end by sorting accumulators

27
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Document-at-a-Time
๏ Processes posting lists for query terms ⟨ q1,…,qm ⟩ all at once 

๏ Sees the same document in all posting lists at the same time, 
determines score, and decides whether it belongs into top-k  
 
 
 

๏ Main memory proportional to k or number of results 

๏ Skipping aids conjunctive queries (all query terms required)  
and can be leveraged for top-k queries (WAND)  

28
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0.6. Effectiveness Measures
๏ We can classify documents for a given query as 

๏ true positives (tp)		 	 returned and relevant 

๏ false positives (fp)	 	 returned and irrelevant 

๏ true negatives (tn)	 	 not returned and irrelevant 

๏ false negatives (fn)	 	 not returned but relevant

29
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Precision, Recall, and F1
๏ Precision measures the ability to return only relevant results  
 
 

๏ Recall measures the ability to return all relevant results  
 
 

๏ F1 score is the harmonic mean of precision and recall

30
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Normalized Discounted Cumulative Gain
๏ Discounted Cumulative Gain (nDCG) considers 

๏ graded relevance judgments (e.g., 2:relevant, 1:marginal, 0:irrelevant) 

๏ position bias (i.e., relevant results close to the top are preferred) 

๏ Considering top-k result with R(q,m) as grade of m-th document 

๏ Normalized DCG (nDCG) obtained through normalization with 
idealized DCG (iDCG) of fictitious optimal top-k result

31

DCG(q, k) =
kX

m=1

2

R(q,m) � 1

log(1 +m)

nDCG(q, k) =
DCG(q, k)

iDCG(q, k)



Advanced Topics in Information Retrieval / Introduction

Questions?

32


