7. Dynamics & Age

Outline

- 7.1. Dynamics & Age
- 7.2. Temporal Information
- 7.3. Search in Web Archives
- 7.4. Historical Document Collections

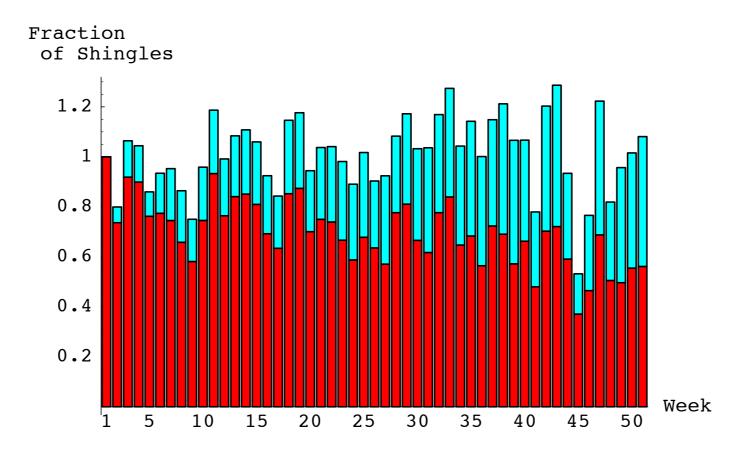
7.1. Dynamics & Age

- The Web is highly dynamic: new content is continuously added; old content is deleted and potentially lost forever
- Web archives (e.g., <u>archive.org</u>, <u>internetmemory.org</u>) have been preserving **old snapshots of web pages** since 1996
- Improved digitization (e.g., OCR) have allowed (newspaper) archives to make old documents (e.g., from 1700s) searchable
- Challenges & Opportunities:
 - How to index highly redundant document collections like web archives?
 - How to make use of temporal information such as publication dates?
 - How to search documents written in archaic language?

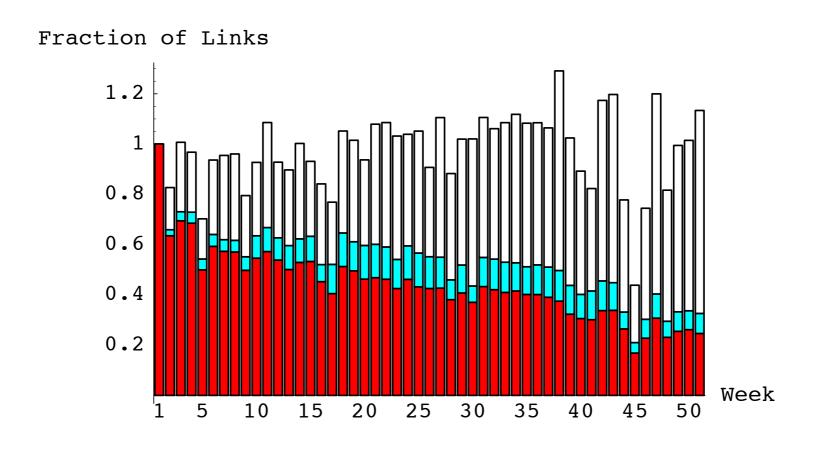
How Dynamic is the Web?

- Ntoulas et al. [9] study the dynamics of the Web in '02-'03
- Data: Weekly crawls of **154 web sites** over one year
 - top-ranked web sites from topical categories in Google Directory (extension of DMOZ) from different top-level domains
 - at most 200K web pages per web site per weekly crawl

Domain	Fraction of pages in domain
.com	41%
.gov	18.7%
.edu	16.5%
.org	15.7%
.net	4.1%
.mil	2.9%
misc	1.1%


How Dynamic are Web Pages?

- <u>Web pages</u>:
 - on average **8% new web pages** per week
 - peek in creation of new pages at the end of each month
 - after 9 months about 50% of web pages have been deleted


How Dynamic is the Content?

- <u>Content</u>: Based on *w*-shingles (contiguous sequence of *w* words)
 - after one year more than 50% of shingles are still available
 - each week about **5% of new shingles** are created

How Dynamic is the Link Structure?

- <u>Hyperlinks</u>:
 - after one year only 24% of links are still available
 - on average **25% of new links** are created **every week**

How Dynamic is the (Visited) Web?

- Adar et al. [1] conducted a fine-grained study of the visited Web
- Data: Hourly fetches of 55K web pages over 5 weeks
 - selected based on **access statistics** from Live Search toolbar
 - selection balances frequently visited and infrequently visited web pages
 - more fine-grained fetches for web pages with high change activity

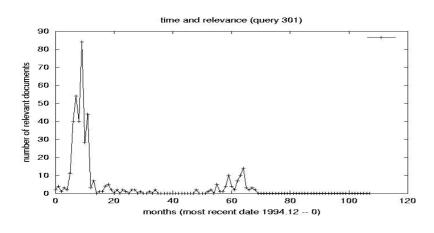
How Dynamic are (Visited) Web Pages?

- Change of web page measured using
 - average time between changes (Hours) determined using content checksums
 - average Dice coefficient (Dice) between adjacent versions as word sets

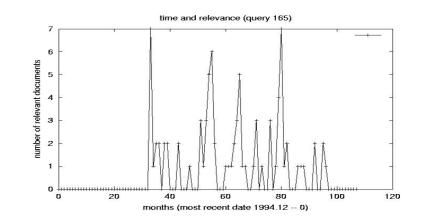
$$D(W_i, W_j) = \frac{2 \cdot |W_i \cap W_j|}{|W_i| + |W_j|}$$

		Inter-version means		
		Hours	Dice	
Total		123	.7940	
Visitors	2	138	.8022	
	3 - 6	125	.8268	
	7 - 38	106	.8252	
	39+	102	.8123	
Domain	.gov	169	.8358	
	.edu	161	.8753	
	.com	126	.7882	
	.net	125	.7642	
	.org	95	.8518	
URL depth	5+	199	.6782	
	4	176	.7401	
	3	167	.7363	
	2	127	.7804	
	1	104	.8200	
	0	80	.8584	
	Industry/trade	218	.6649	
ry	Music	147	.8013	
gor	Porn	137	.7649	
Catego	Personal pages	88	.8288	
	Sports/recreation	66	.8975	
	News/magazines	33	.8700	

7.2. Temporal Information


- Documents come with different kinds of temporal information
 - **publication dates** indicating when the document was published
 - **temporal expressions** (e.g., last month, January 9th 2014, in the '90s) indicating which time periods the document's content talks about
- Queries can be **temporally classified** along several dimensions
 - ...whether they can refer to a single or multiple time periods
 - **temporally unambiguous** (e.g., fifa world cup 2014, battle of waterloo)
 - **temporally ambiguous** (e.g., summer olympics, world war)

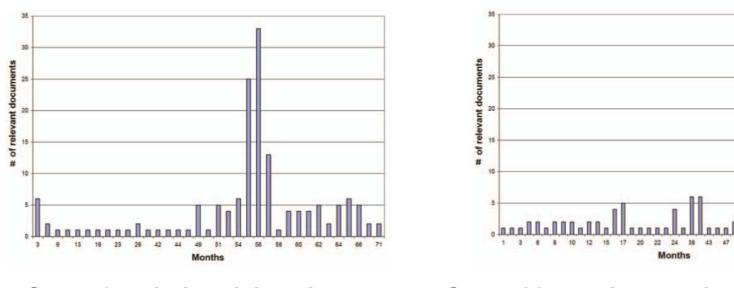
Temporal Information


- ...whether a time period is explicitly mentioned or implicitly assumed
 - **explicitly temporal** (e.g., fifa world cup 2014, presidential election 2008)
 - implicitly temporal (e.g., superbowl, london bombing)
- ...whether they aim for information about the past, present, or future
 - **past** (e.g., historic map of rome, news reports about moon landing)
 - **recent** (e.g., paris terrorist attack, tesla stock price, lithuania euro)
 - **future** (e.g., lisa pathfinder launch, academy awards 2015)
- ...whether they can refer to any time period at all
 - **atemporal** (e.g., muffin recipe, side effects of paracetamol, muscle cramps)

7.2.1. Temporal Document Priors

- Li and Croft [7] develop an approach based on language models targeted at queries favoring more recent documents
- Example: Publication dates of relevant documents in TREC

Query 301: international organized crime


Query 165: tobacco company advertising and the young

 Query-likelihood approach with temporal document prior P[d] depending on publication date t of document and current date c

$$\mathbf{P}\left[d \mid q\right] \propto \mathbf{P}\left[d\right] \cdot \prod_{v} \mathbf{P}\left[v \mid d\right] \qquad \qquad \mathbf{P}\left[d\right] = \lambda e^{-\lambda (c-t)}$$

7.2.2. Temporal Query Profiles

- Dakka et al. [4] target general time-sensitive queries using an approach based on language models
- Example: Publication dates of relevant documents in TREC

Query 311: industrial espionage Qu

Query 304: endangered species (mammals)

 <u>Idea</u>: Estimate temporal document prior from publication dates of pseudo-relevant documents retrieved for the query

Temporal Query Profiles

 Let R denote the set of pseudo-relevant documents (e.g., top-50 from baseline), a temporal query profile is estimated as

$$\mathbf{P}\left[t \mid q\right] = \sum_{d \in R} \mathbf{P}\left[t \mid d\right] \frac{\mathbf{P}\left[q \mid d\right]}{\sum_{d' \in R} \mathbf{P}\left[q \mid d'\right]} \quad \mathbf{P}\left[t \mid d\right] = \mathbb{1}(d \text{ published at } t)$$

- Temporal query profile is **smoothed in two ways**
 - using linear interpolation with the temporal collection profile to account for fluctuations in publication volume

$$\mathbf{P}\left[t \mid D\right] = \frac{1}{|D|} \sum_{d \in D} \mathbf{P}\left[t \mid d\right]$$

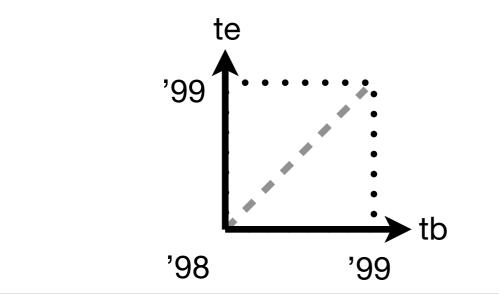
• using a **moving average** to account for longer lasting events

$$\overline{\mathbf{P}}[t \mid q] = \frac{1}{w} \sum_{i=0}^{w-1} \mathbf{P}[t-i \mid q]$$

Temporal Query Profile

 Temporal query profile is integrated as document prior with t as the publication date of document d

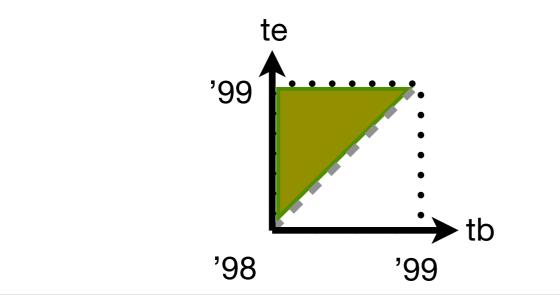
$$P[q \mid d] = P[t \mid q] \cdot \prod_{v} P[v \mid d]$$


7.2.3. Temporal Expressions

- Berberich et al. [3] develop an approach based on language models targeted at explicitly temporal queries that mention a temporal expression (e.g., michael jordan 1990s)
- Standard retrieval models treat temporal expressions as terms and are unaware of their inherent semantics (e.g., '90s is different from 1990s and 2005 is different from March 2005)
- **Temporal expressions are vague**, i.e., the precise time interval they refer to is uncertain and this uncertainty needs to be reflected
 - in the 1990s can refer to [1992, 1995], [1990, 1999], [1992, 1993], etc.
 - in 2002 can refer to [2002/01/01, 2002/12/31], [2002/05/04, 2002/07/02], etc.

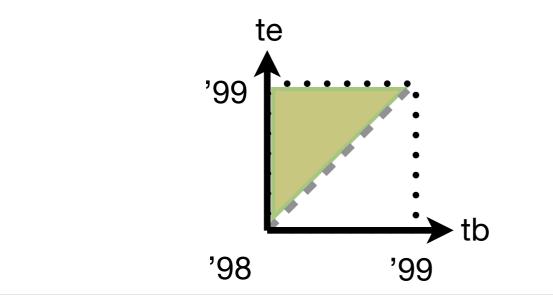
- Temporal expressions are modeled as sets of time intervals and denoted as four-tuples (tb_I, tb_u, te_I, te_u)
- Temporal expression T = (tb_I, tb_u, te_I, te_u) can refer to any time interval [tb, te] such that the following holds

 $tb_l \leq tb \leq tb_u \quad \wedge \quad tb \leq te \quad \wedge \quad te_l \leq te \leq te_u$


 <u>Example</u>: Temporal expression in 1998 represented as (1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

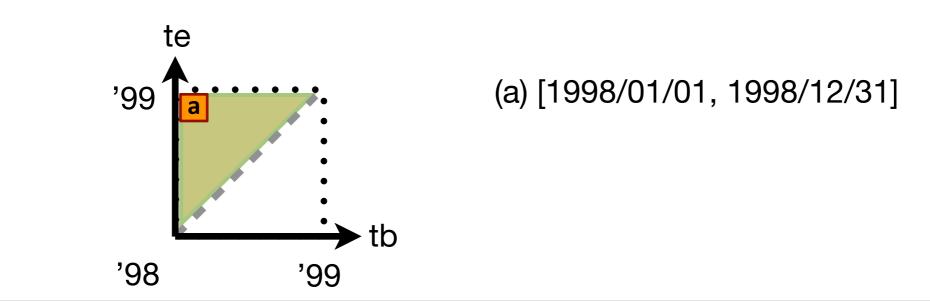
- Temporal expressions are modeled as sets of time intervals and denoted as four-tuples (tb_I, tb_u, te_I, te_u)
- Temporal expression T = (tb_I, tb_u, te_I, te_u) can refer to any time interval [tb, te] such that the following holds

 $tb_l \leq tb \leq tb_u \quad \wedge \quad tb \leq te \quad \wedge \quad te_l \leq te \leq te_u$


 <u>Example</u>: Temporal expression in 1998 represented as (1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

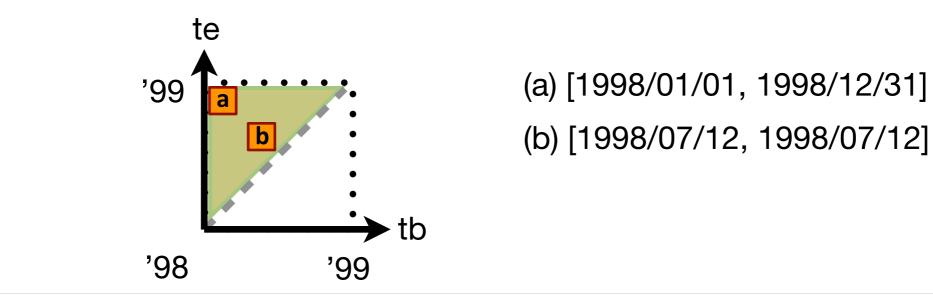
- Temporal expressions are modeled as sets of time intervals and denoted as four-tuples (tb_I, tb_u, te_I, te_u)
- Temporal expression T = (tb_I, tb_u, te_I, te_u) can refer to any time interval [tb, te] such that the following holds

 $tb_l \leq tb \leq tb_u \quad \wedge \quad tb \leq te \quad \wedge \quad te_l \leq te \leq te_u$


 <u>Example</u>: Temporal expression in 1998 represented as (1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

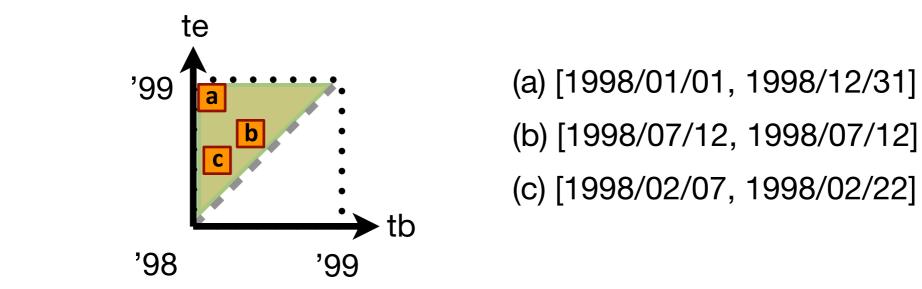
- Temporal expressions are modeled as sets of time intervals and denoted as four-tuples (tb_I, tb_u, te_I, te_u)
- Temporal expression T = (tb_I, tb_u, te_I, te_u) can refer to any time interval [tb, te] such that the following holds

 $tb_l \leq tb \leq tb_u \quad \wedge \quad tb \leq te \quad \wedge \quad te_l \leq te \leq te_u$


 <u>Example</u>: Temporal expression in 1998 represented as (1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

- Temporal expressions are modeled as sets of time intervals and denoted as four-tuples (tb_I, tb_u, te_I, te_u)
- Temporal expression T = (tb_I, tb_u, te_I, te_u) can refer to any time interval [tb, te] such that the following holds

 $tb_l \leq tb \leq tb_u \quad \wedge \quad tb \leq te \quad \wedge \quad te_l \leq te \leq te_u$


 <u>Example</u>: Temporal expression in 1998 represented as (1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

- Temporal expressions are modeled as sets of time intervals and denoted as four-tuples (tb_I, tb_u, te_I, te_u)
- Temporal expression T = (tb_I, tb_u, te_I, te_u) can refer to any time interval [tb, te] such that the following holds

 $tb_l \leq tb \leq tb_u \quad \wedge \quad tb \leq te \quad \wedge \quad te_l \leq te \leq te_u$

 <u>Example</u>: Temporal expression in 1998 represented as (1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

Document and Query Models

- Documents are modeled as a set of textual terms d_{text} and a set of temporal expressions d_{time}
- Queries are modeled as a set of textual terms q_{text} and a set of temporal expressions q_{time}
- Query-likelihood approach assuming independence between textual terms and temporal expressions

 $P[q \mid d] = P[q_{text} \mid d_{text}] \times P[q_{time} \mid d_{time}]$

 Query likelihood of textual part P[q_{text} | d_{text}] is estimated using unigram language model with Jelinek-Mercer smoothing (mixing parameter: γ)

Language Model for Temporal Expressions

- Query likelihood of temporal part P[q_{time} | d_{time}] is estimated
 - assuming independence between temporal expressions

$$P[q_{time} \mid d_{time}] = \prod_{Q \in q_{time}} P[Q \mid d_{time}]$$

 \circ assuming uniform probability for temporal expressions from document d

$$\mathbf{P}\left[Q \mid d_{time}\right] = \frac{1}{|d_{time}|} \sum_{T \in d_{time}} \mathbf{P}\left[Q \mid T\right]$$

• assuming uniform probability for time intervals that Q can refer to

$$\mathbf{P}\left[Q \mid T\right] = \frac{1}{|Q|} \sum_{[q_b, q_e] \in Q} \mathbf{P}\left[\left[q_b, q_e\right] \mid T\right]$$

Language Model for Temporal Expressions

• assuming uniform probability for time intervals that T can refer to

$$P[[q_b, q_e] | T] = \frac{1}{|T|} \mathbb{1}([q_b, q_e] \in T)$$

• P[Q|T] can be simplified as

$$\mathbf{P}\left[Q \mid T\right] = \frac{|T \cap Q|}{|T| \cdot |Q|}$$

treating temporal expressions as sets of time intervals

 P[Q|d_{time}] is smoothed with collection model P[Q|D_{time}] using Jelinek-Mercer smoothing (mixing parameter: λ)

Experimental Evaluation

- <u>Document Collection</u>: The New York Times Annotated Corpus (1.8 million newspaper articles published between '87 and '07)
- Queries: 40 queries in total gathered using crowdsourcing
 - related to **four topics** *sports*, *culture*, *technology*, *world affairs*
 - five temporal granularities (day, month, year, decade, century)

	Sports	Culture
Day	boston red sox [october 27, 2004]	kurt cobain [april 5, 1994]
Ū.	ac milan [may 23, 2007]	keith harring [february 16, 1990]
Month	stefan edberg [july 1990]	woodstock [august 1994]
	italian national soccer team [july 2006]	pink floyd [march 1973]
Year	babe ruth [1921]	rocky horror picture show [1975]
	chicago bulls [1991]	michael jackson [1982]
	michael jordan [1990s]	sound of music [1960s]
	new york yankees [1910s]	mickey mouse [1930s]
Century	la lakers [21st century]	academy award [21st century]
	soccer [21st century]	jazz music [21st century]
	Technology	World Affairs
Day	mac os x [march 24, 2001]	berlin [october 27, 1961]
	voyager [september 5, 1977]	george bush [january 18, 2001]
	thomas edison [december 1891]	poland [december 1970]
	microsoft halo [june 2000]	pearl harbor [december 1941]
	roentgen [1895]	nixon [1970s]
	wright brothers [1905]	iraq [2001]
	internet [1990s]	vietnam [1960s]
	sewing machine [1850s]	monica lewinsky [1990s]
Continue	musket [16th century]	queen victoria [19th century]
Century	siemens [19th century]	muhammed [7th century]

Queries

Precision / nDCG

	P@5	N@5	P@10	N@10
LM $(\gamma = 0.25)$ LM $(\gamma = 0.75)$	$\begin{array}{c} 0.33\\ 0.38\end{array}$	$\begin{array}{c} 0.34 \\ 0.39 \end{array}$	$0.30 \\ 0.37$	$\begin{array}{c} 0.32\\ 0.38\end{array}$
LMTU-EX ($\gamma = 0.25, \lambda = 0.75$) LMTU-EX ($\gamma = 0.5, \lambda = 0.75$)	0.53 0.54	0.51 0.52	0.49 0.51	0.49 0.49

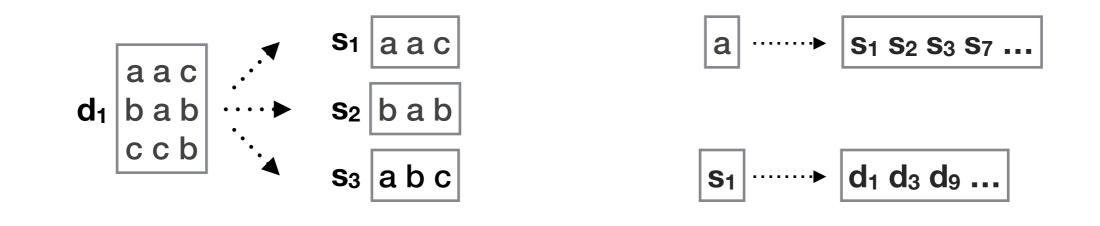
7.3. Search in Web Archives

Web archives (e.g., <u>archive.org</u>, <u>internetmemory.org</u>) preserve
 old snapshots of URLs (web pages, images, etc.)

 Internet Archive has harvested 435 billion web pages (including embedded media files) since 1996

7.3. Search in Web Archives

Web archives (e.g., <u>archive.org</u>, <u>internetmemory.org</u>) preserve
 old snapshots of URLs (web pages, images, etc.)


 Internet Archive has harvested 435 billion web pages (including embedded media files) since 1996

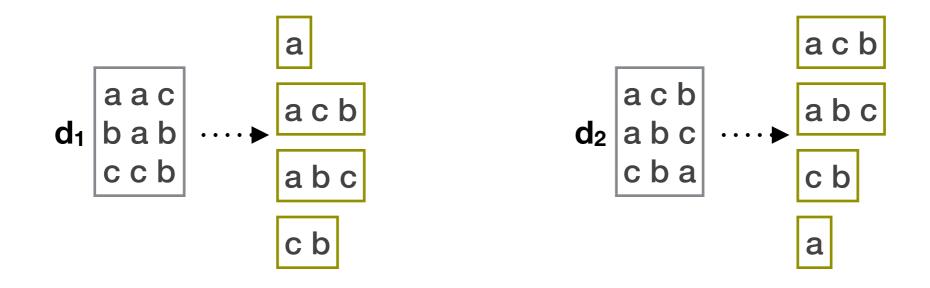

Search in Web Archives

- Challenges & Opportunities:
 - **vast volume** of web archives (Internet Archive: 435 billion snapshots)
 - **Iongitudinal coverage** of web archives (Internet Archive: 1996 now)
 - document versions (snapshots of the same document) taken at nearby times exhibit a high degree of redundancy allowing for compression
 - document versions come with a valid-time interval, indicating when the version was current, which allows for more effective search

7.3.1. Non-Redundant Indexing

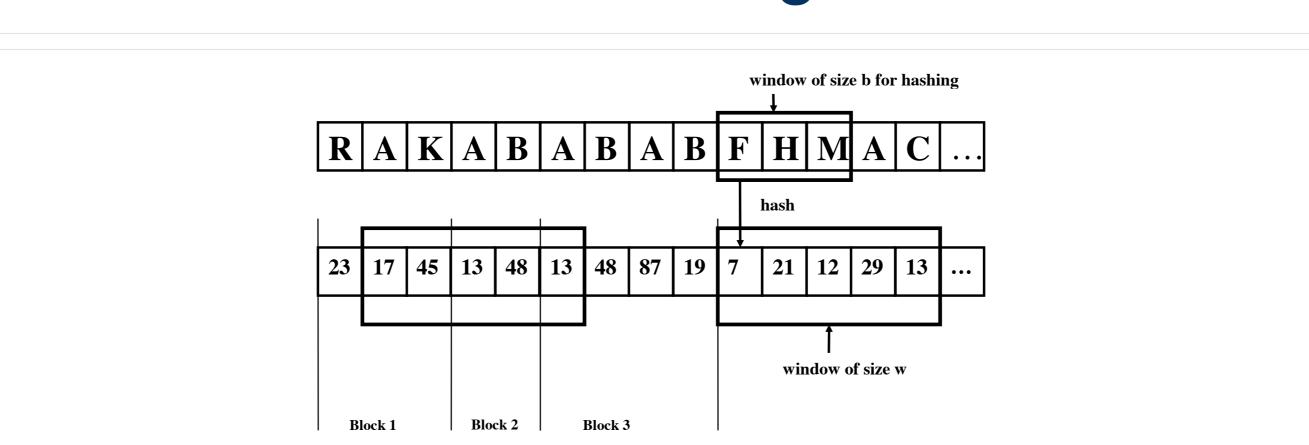
- Zhang and Suel [11] devise an approach to index highlyredundant document collections (e.g., web archives)
- <u>Ideas</u>:
 - break up documents into shorter segments
 - segments should be shared between overlapping documents
 - use a two-level index structure to index associations between words-and-segments and segments-and-documents

- Hash breaking (as a naïve approach)
 - compute **hash code** h[i] for each term d[i] in document
 - break document at all indices i such that h[i] % w = 0


- Hash breaking (as a naïve approach)
 - compute **hash code** h[i] for each term d[i] in document
 - break document at all indices i such that h[i] % w = 0

- Hash breaking (as a naïve approach)
 - compute **hash code** h[i] for each term d[i] in document
 - break document at all indices i such that h[i] % w = 0

- Hash breaking (as a naïve approach)
 - compute **hash code** h[i] for each term d[i] in document
 - break document at all indices i such that h[i] % w = 0



- Hash breaking (as a naïve approach)
 - compute **hash code** h[i] for each term d[i] in document
 - break document at all indices i such that h[i] % w = 0

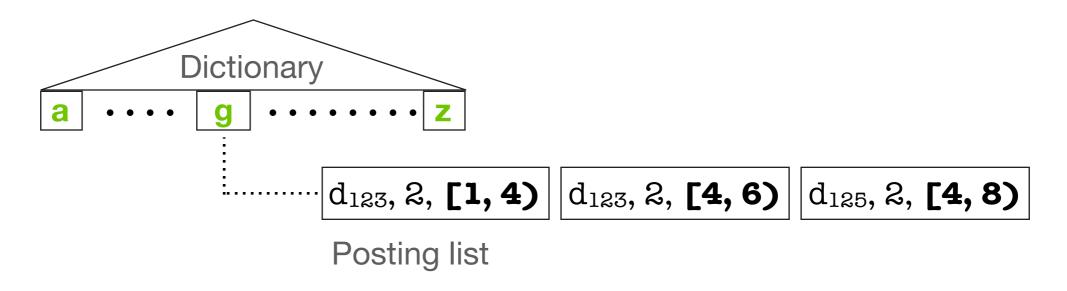
Winnowing

- Winnowing [10] (as a better approach with guarantees)
 - compute hash code h[i] for all subsequences d[i ... i+b-1] of length b
 - **slide window** of size **w** over the array of hash codes h[0 .. |d|-b]
 - if h[i] is strictly smaller than all other values h[j] in current window then cut the document between i and i -1
 - if there are **multiple positions** i in the current window with minimal value h[i]
 - if we have previously cut directly before one of them, then don't perform a cut
 - otherwise, cut before the rightmost position i having minimal value h[i]

Winnowing

- Winnowing guarantees that two documents having a subsequence of length at least w+b+1 in common share at least one segment
- Maximum segment length is w
- Expected sequence length is (w+1)/2

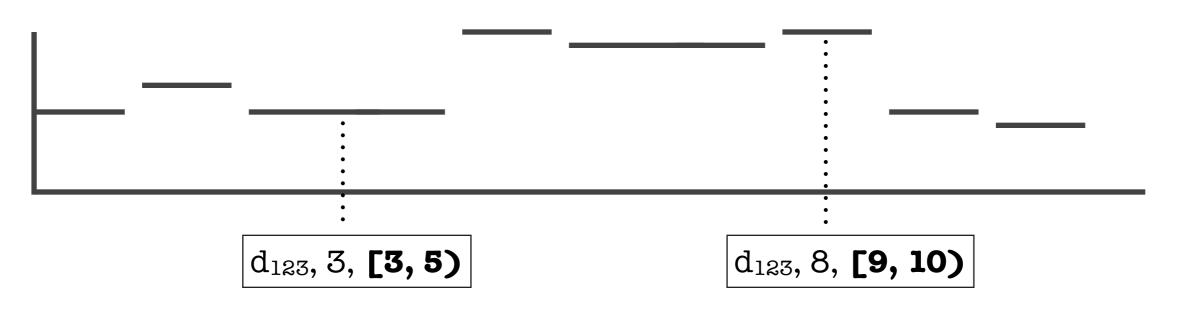
Query Processing


- Query processing needs to be adapted to reflect that the same segment can occur in many documents
 - when seeing a segment in a posting list of the first index,
 look up documents containing it in the second index
 - effectiveness of skipping for conjunctive queries is reduced
 - terms could be spread over different segments in a document
 - segments can be contained in documents with arbitrary document identifiers

7.3.2. Time-Travel Text Search

- Berberich et al. [2] develop an approach to support time-travel text search on version document collections
- Time-travel keyword query q@t combines keywords q with a time of interest t to search "as of" the indicated time in the past
- <u>Ideas</u>:
 - coalesce postings belonging to temporally adjacent versions if their payloads (e.g., score) are almost the same
 - partition the index along time to improve query processing performance and

Time-Travel Inverted Index

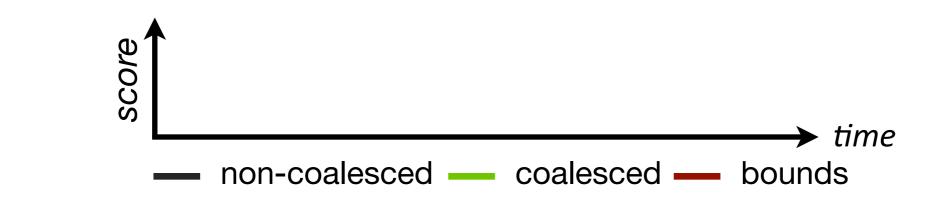

• Time-travel inverted index adds a **valid-time interval** [t_b , t_e) to postings indicating when the information therein was current

 Time-travel keyword query q@t is processed by reading posting lists for keywords in q and filtering out postings whose valid-time interval does not contain t, i.e.:

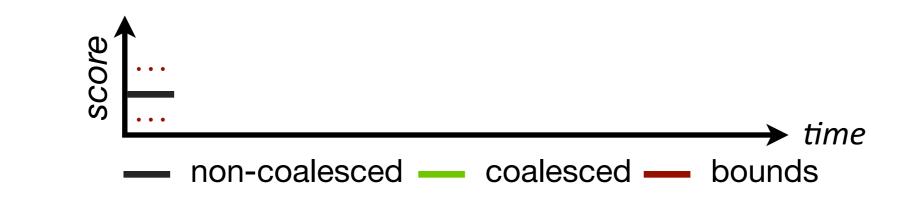
$$t \notin [t_b, t_e)$$

- Naïve application of time-travel inverted index results in one posting per keyword per document version
- Observation: Postings belonging to temporally adjacent versions of the same document often have similar payloads

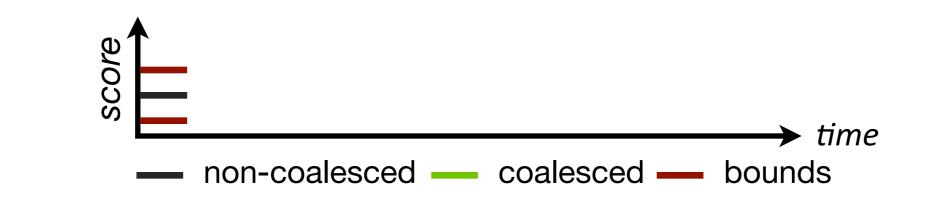
 <u>Idea</u>: Coalesce (i.e., group together) postings having similar payloads to reduce index size


- Naïve application of time-travel inverted index results in one posting per keyword per document version
- Observation: Postings belonging to temporally adjacent versions of the same document often have similar payloads

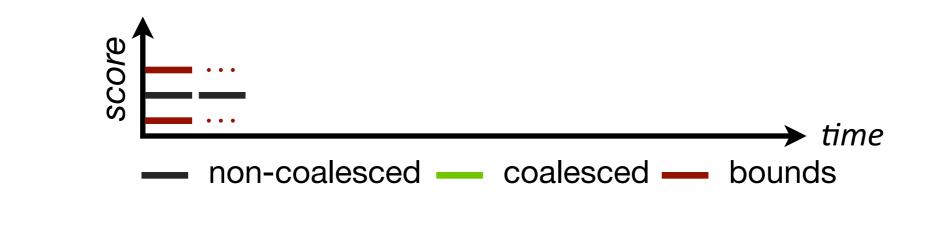
 <u>Idea</u>: Coalesce (i.e., group together) postings having similar payloads to reduce index size


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

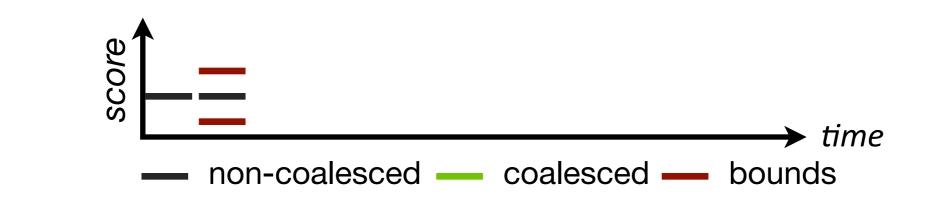
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq e$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

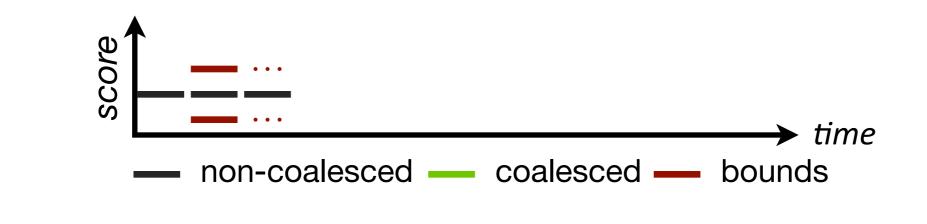
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

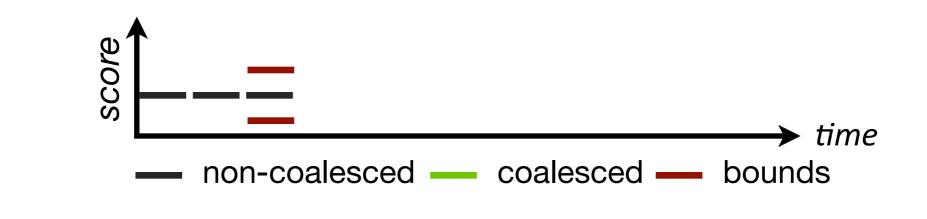
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

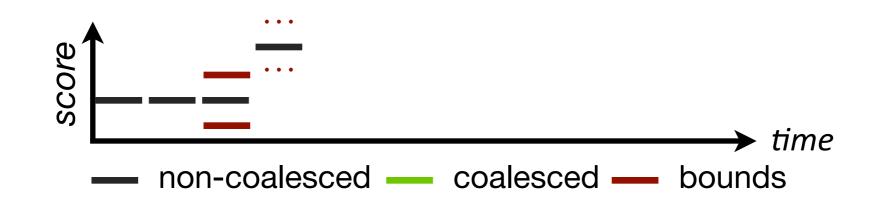
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

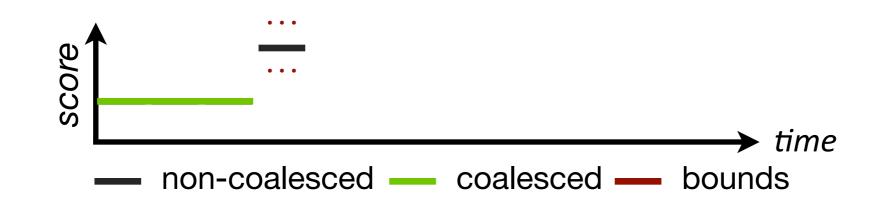
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

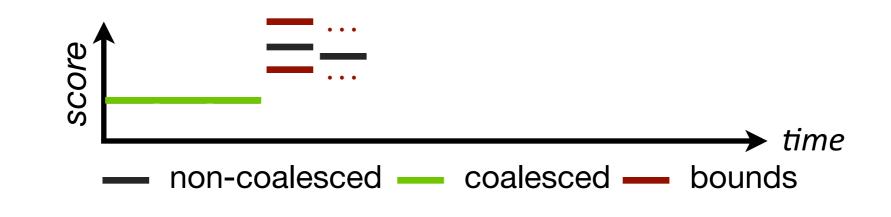
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

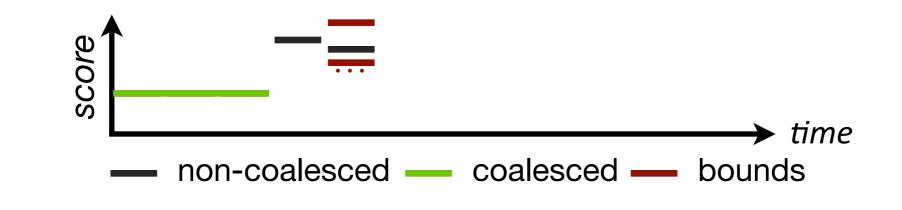
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$

 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

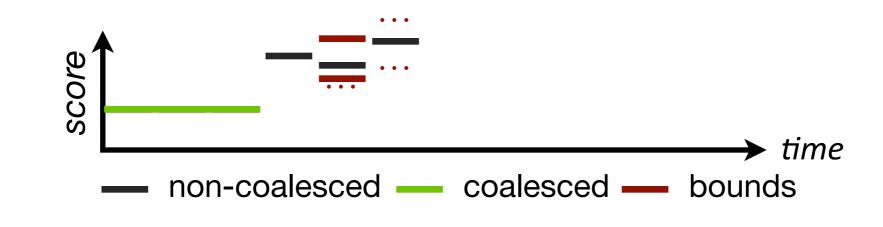
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

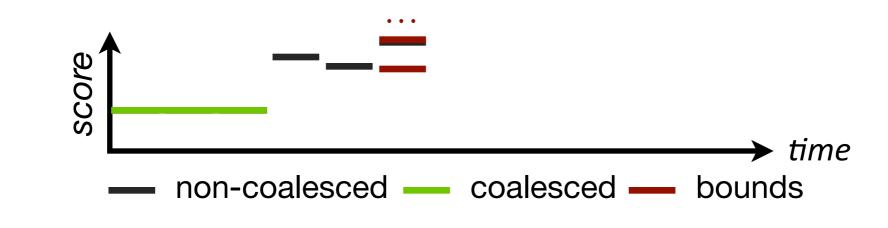
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

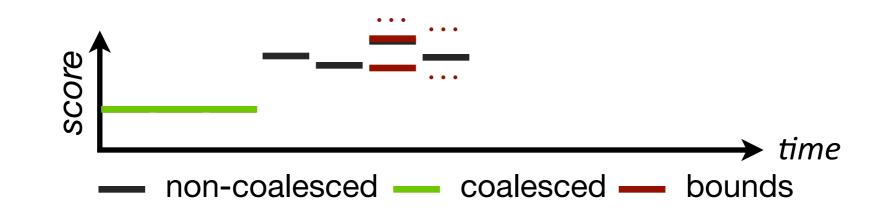
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

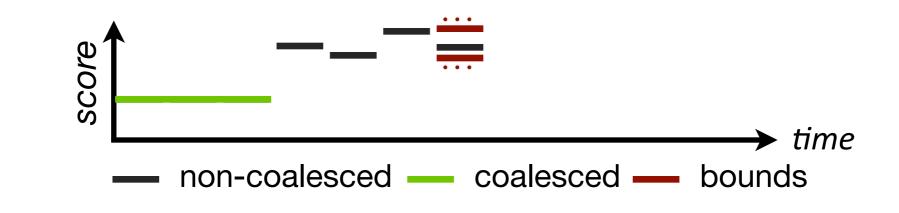
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

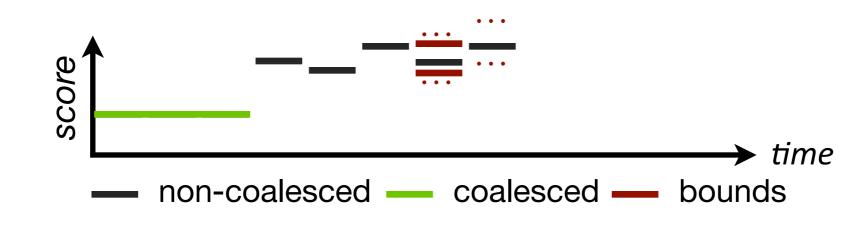
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

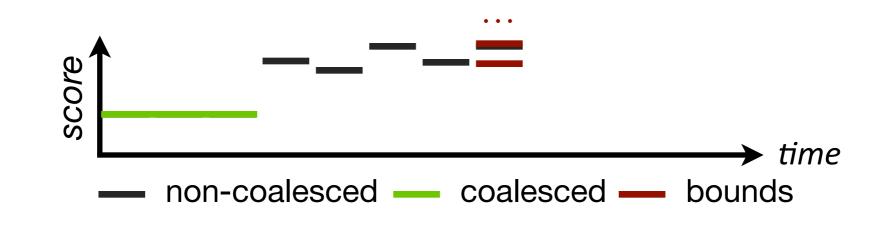
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

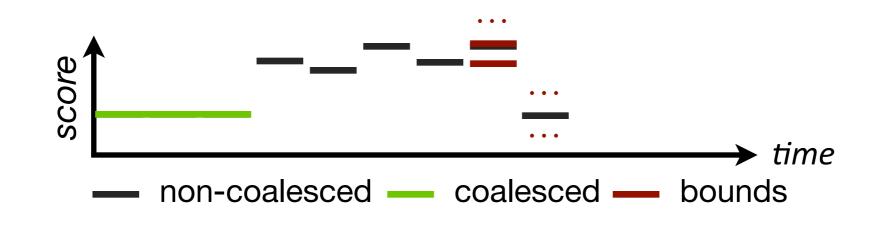
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

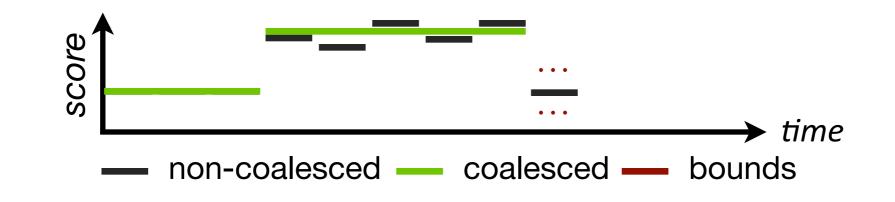
$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq e$$


 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$

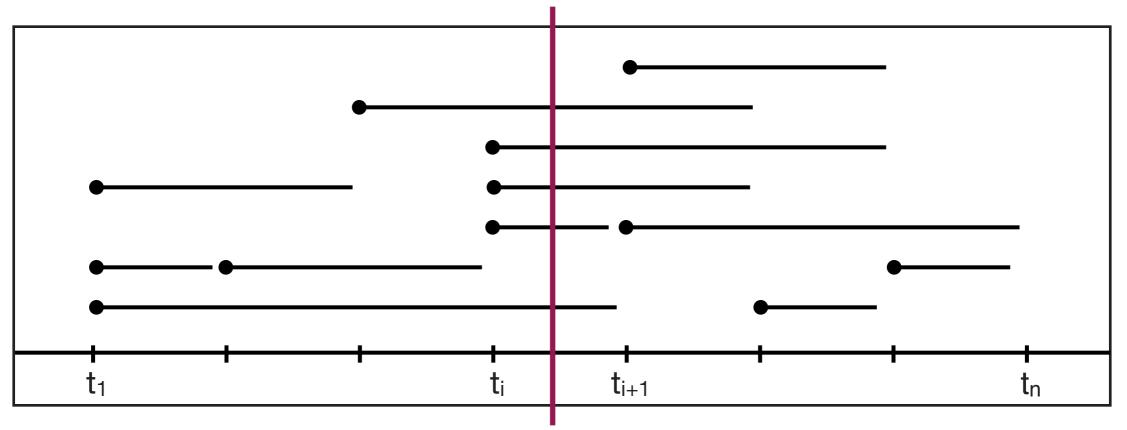
 Problem Statement: Given a sequence I of postings for term v in document d, determine a minimal-length output sequence O that keeps the relative approximation error below a threshold ε

$$\begin{array}{c} \mathbf{p}_{2} \\ \mathbf{p}_{2} \\ \mathbf{p}_{1} \\ \mathbf{p}_{3} \end{array} \qquad \forall p_{i} \in I : \frac{|p_{i} - \hat{p}|}{p_{i}} \leq \epsilon \end{array}$$

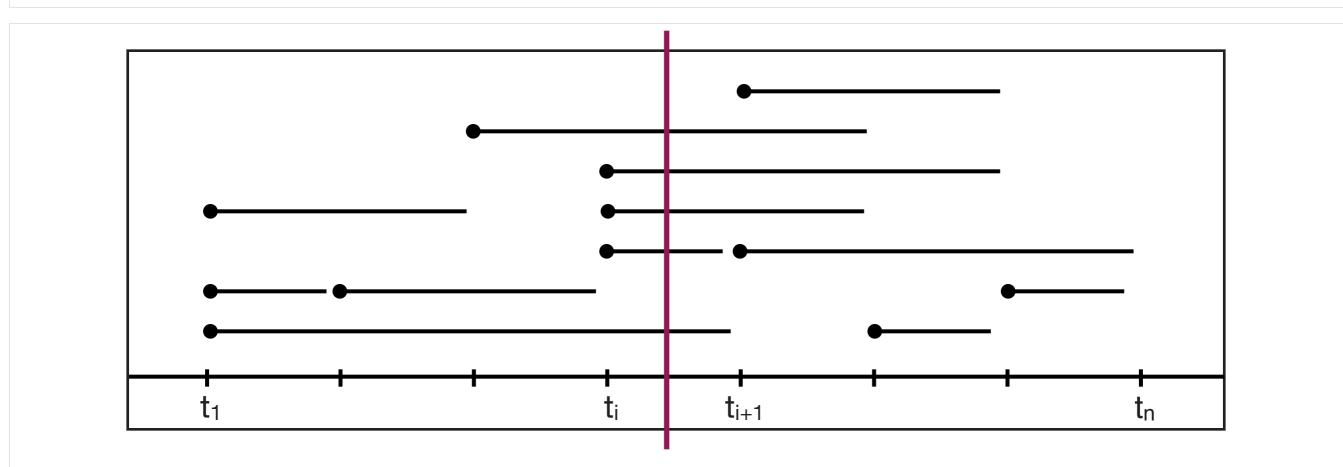
Input: Sequence I of temporally adjacent postings ⟨ p₁, ..., p_n ⟩ for document d each with valid-time interval [t_b, t_e), and score s
 Output: Sequence O

 $O = \langle \rangle; D = d; LOW = p_1.s - p_1.s \times \epsilon; UP = p_1.s + p_1.s \times \epsilon; TB = p_1.t_b \qquad // initialize$

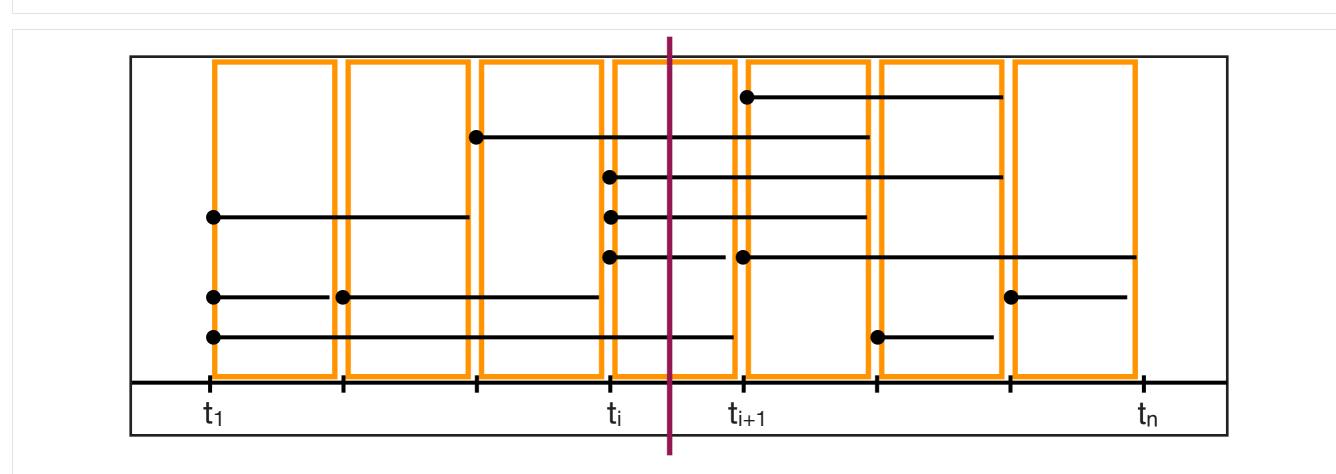
for each posting p_i from input sequence I

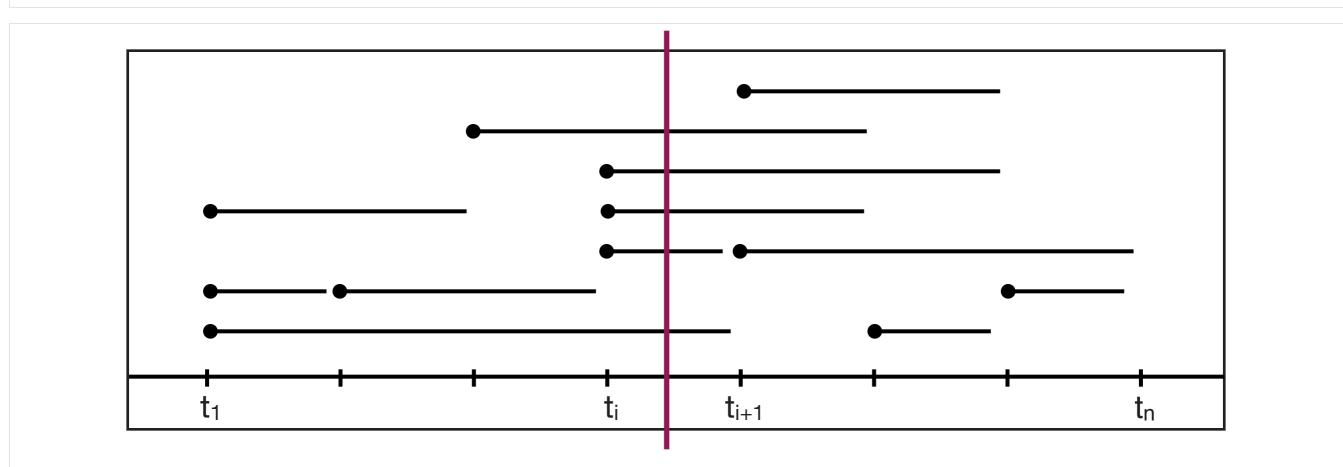

low = $p_i.s - p_i.s \times \varepsilon$; up = $p_i.s + p_i.s \times \varepsilon$ // lower and upper boundif [LOW, UP] \cap [low, up] $\neq \emptyset$ // can p_i be coalesced?

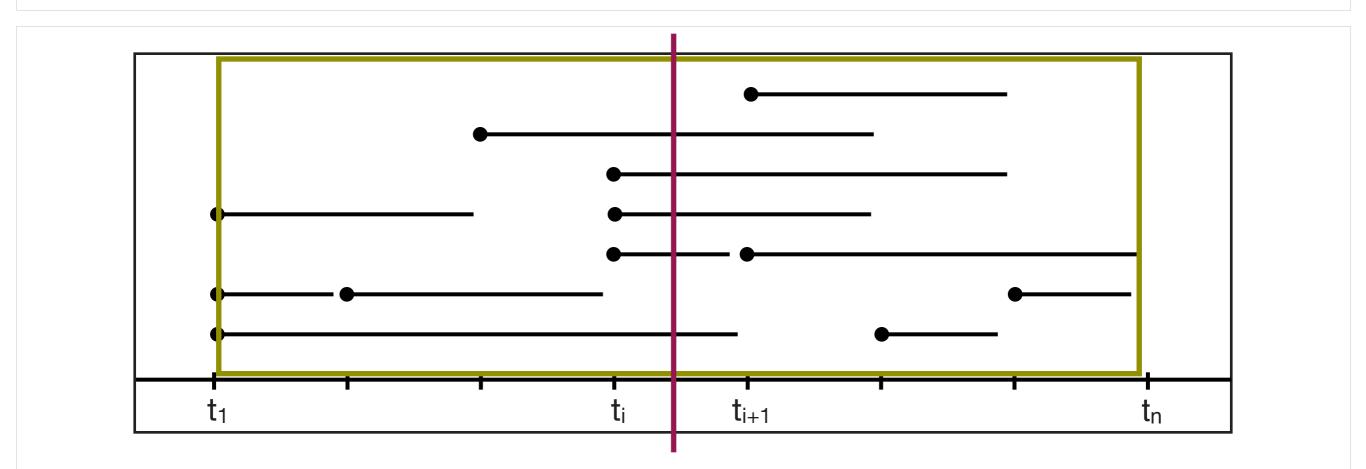
LOW = max(low, LOW), UP = min(up, UP)


else

$$\begin{split} TE &= p_i.t_b; 0 = 0 \cup \{(D, [TB, TE), (LOW + UP) / 2)\} \ // \ coalesced \ posting \\ LOW &= low; UP = up; TB = p_i.t_b \ // \ re-initialize \\ \textbf{if} \ i = n \\ TE &= p_i.t_e; 0 = 0 \cup \{(D, [TB, TE), (LOW + UP) / 2)\} \ // \ last \ posting \end{split}$$


 <u>Problem</u>: Query processing needs to read entire posting lists, although many postings can be discarded for a query q@t


 <u>Idea</u>: Partition each posting list along the time dimension, so that the posting list for time interval [t_i, t_j) contains all postings whose valid-time interval overlaps with it


- Trade-off between index size and query-processing performance
 - **space optimal** S_{opt} (poor performance): use a single partition [t_1 , t_n)
 - performance optimal Popt (poor space): use partitions [ti, ti+1)

- **Trade-off** between index size and query-processing performance
 - **space optimal** S_{opt} (poor performance): use a single partition [t_1 , t_n)
 - performance optimal Popt (poor space): use partitions [ti, ti+1)

- Trade-off between index size and query-processing performance
 - **space optimal** S_{opt} (poor performance): use a single partition [t_1 , t_n)
 - performance optimal Popt (poor space): use partitions [ti, ti+1)

- **Trade-off** between index size and query-processing performance
 - **space optimal** S_{opt} (poor performance): use a single partition [t_1 , t_n)
 - performance optimal P_{opt} (poor space): use partitions [t_i, t_{i+1})

- <u>Idea</u>: Define optimization problem to systematically trade off index space vs. query-processing performance
 - determine a **partitioning** P of $[t_1, t_n)$
 - s(P) : number of postings under partitioning P
 - c(t, P) : number of postings read to process time point t under P
- Performance guarantee PG ensures that cost for any time point is within a factor γ of best performance achieved by Popt

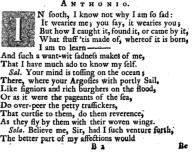
 $\underset{P}{\operatorname{arg\,min}} s(P) \quad \text{s.t.} \quad \forall t \in [t_1, t_n) \, : \, c(t, P) \leq \gamma \cdot c(t, P_{opt})$

 Optimal solution computable using dynamic programming over prefix subproblems [t₁, t_i)

Advanced Topics in Information Retrieval / Dynamics & Age

7.4. Historical Document Collections

- Improved digitization methods (e.g., OCR) have resulted in (very) old documents now being digitally available
- Examples:
 - The New York Times Archive (1851 today)
 - The Times Archive (1785 now)
 - Google Books (~1500 now)
 - HathiTrust (~1500 now)



THE MERCHANT of VENICE.

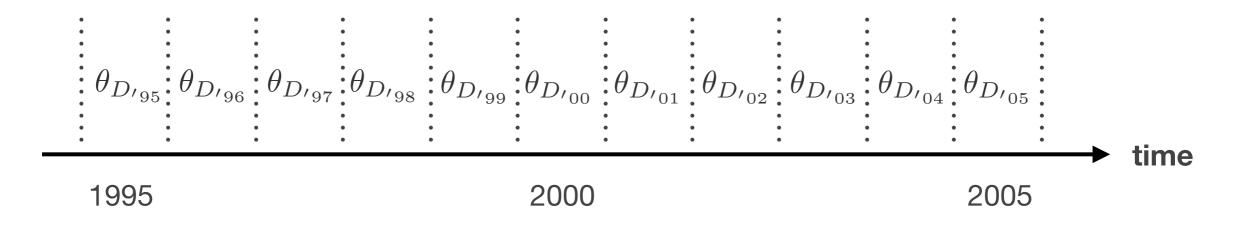
ACT I.

SCENE, a Street in Venice. Enter Anthonio, Solarino, and Salanio.

Digitized by Google

37

Historical Document Collections


- Challenges & Opportunities:
 - unknown publication dates of documents can be estimated based on similar documents with known publication dates
 - vocabulary gap between today's queries and old documents needs to be bridged for effective information retrieval
 - Iongitudinal document collections allow analyses that give insights into, e.g., the evolution of language and historic events

7.4.1. Document Dating

- Problem: Publication dates of documents are unknown
 - in historical document collections due to lack of information
 - on the **Web** due to unreliable usage of the HTTP last-modified field
- de Jong et al. [5] employ **language models** to date documents
- Requirements: Document collection D with known dates which
 - is **sufficiently large** to avoid overfitting to individual documents
 - covers the **same domain** as the documents to be dated
 - covers the **period** from which documents to be dated originate

Document Dating

 Fix a temporal granularity (e.g., decade, year, month) and partition the document collection D into disjoint partitions D₁,...,D_n so that all documents in D_i have been published during the i-th time period (e.g., decade)

• Unigram language model with Dirichlet smoothing θ_{Di} is estimated for each partition D_i

Document Dating

 Document with unknown publication date d is dated as having been published in time interval i*

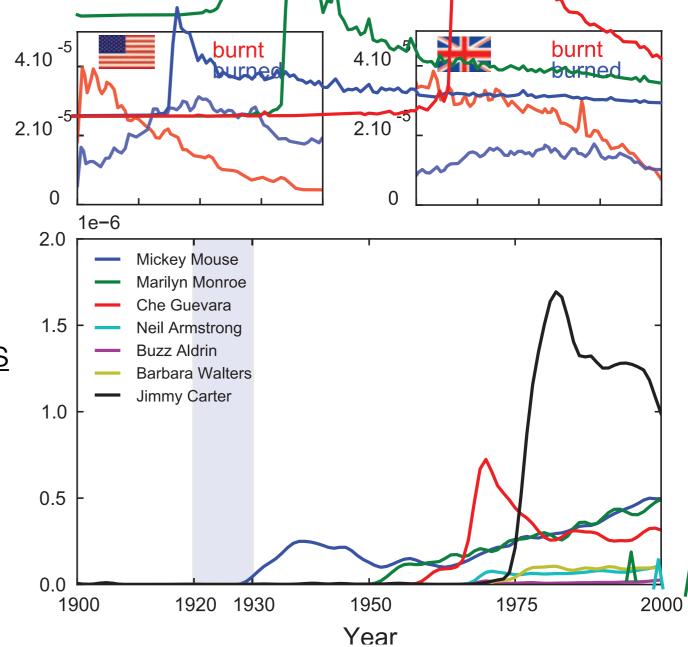
 $\underset{i^*}{\arg\min KL(\theta_{D_i^*} \| \theta_d)}$

 Approach achieves precision of ~30% in experiments on Dutch newspaper articles published between '99 and '05

7.4.2. Historical Document Retrieval

- Information retrieval on historical document collection suffers from a vocabulary gap between today's queries and old documents
 - **language evolution** (e.g., "and if he hear thee, thou wilt anger him")
 - terminology evolution (e.g., Leningrad/Saint Petersburg)
- Koolen et al. [6] treat the problem as a cross-language information retrieval problem by translating documents using rewriting rules mined from the document collection

Historical Document Retrieval


- Phonetic Sequence Similarity
 - **transcribe** historical and modern words **into phonemes** veeghen (historical) \rightarrow v e g @ n, vegen (modern) \rightarrow v e g @ n
 - find **pairs of historical and modern word** with same pronouncation
 - split words into sequences of consonants and vowels

historical: v	ee	gh	е	n
<u>modern</u> : v	е	g	е	n

- align sequences and spot rewritings (e.g., $ee \rightarrow e, gh \rightarrow g$)
- rewritings that are **often observed** become **rewriting rules**

7.4.3. Culturomics

- Michel et al. [8] use n-gram statistics computed for every year in the Google Books corpus to conduct analysis, e.g., about
 - language evolution
 - popularity of celebrities
 - historic events
- Data & Demo available at: <u>https://books.google.com/ngrams</u>

Summary

- Web is highly dynamic, hyperlinks more than web pages more than shingles; degree of dynamics depends on characteristics of the website and/or web page
- Temporal information (e.g., publication dates and temporal expressions) can be leveraged for more effective IR
- Web archives keep often highly-similar old snapshots of web pages, allowing for efficient indexing and time-travel text search
- Historical document collections contain documents published long time ago, are challenging to search, but insightful to analyze

References

- [1] **E. Adar, J. Teevan, S. T. Dumais, J. L. Elsass**: The Web Changes Everything: Understanding the Dynamics of Web Content, WSDM 2009
- [2] K. Berberich, S. Bedathur, T. Neumann, G. Weikum: A Time Machine for Text Search, SIGIR 2007
- [3] **K. Berberich, S. Bedathur, O. Alonso, G. Weikum:** *A Language Modeling Approach for Temporal Information Needs*, ECIR 2010
- [4] **F. de Jong, H. Rohde, D. Hiemstra:** *Temporal Language Models for the Disclosure of Historical Text*, Royal Netherlands Academy of Arts and Sciences, 2005
- [5] **W. Dakka, L. Gravano, P. G. Ipeirotis:** *Answering General Time-Sensitive Queries*, TKDE 24(2), 2012

References

- [6] **M. Koolen, F. Adriaans, J. Kaamps, M. de Rijke:** A Cross-Language Approach to *Historic Document Retrieval*, ECIR 2006
- [7] **X. Li and W. B. Croft:** *Time-Based Language Models*, CIKM 2003
- [8] **J.-B. Michel et al.:** *Quantitative Analysis of Culture Using Millions of Digitized Books*, Science 331, 2011
- [9] **A. Ntoulas, J. Cho, C. Olston:** *What's New on the Web? The Evolution of the Web from a Search Engine Perspective*, WWW 2004
- [10] **S. Schleimer, D. S. Wilkerson, A. Aiken:** *Winnowing: Local Algorithms for Document Fingerprinting*, SIGMOD 2003
- [11] J. Zhang and T. Suel: Efficient Search in Large Textual Collections with Redundancy, WWW 2007