
Using Graph Summarization for Join-Ahead Pruning
in a Distributed RDF Engine

Sairam Gurajada† Stephan Seufert† Iris Miliaraki† Martin Theobald‡

†{gurajada, sseufert, miliaraki}@mpi-inf.mpg.de ‡martin.theobald@ua.ac.be
Max-Planck Institute for Informatics University of Antwerp

Saarbrücken, Germany Antwerp, Belgium

ABSTRACT
The need for scalable and efficient RDF stores has seen a high de-
mand recently. Many efficient systems, both centralized and dis-
tributed, have been proposed. Since a row-oriented output is re-
quired by SPARQL, most of the current systems rely on relational
joins. One of the problems with relational joins, though, is a perfor-
mance bottleneck imposed by the generation of large intermediate
relations which could be avoided by using more accurate data and
pruning statistics. To address this problem, recently several sys-
tems have been proposed that employ bisimulation-based graph
summaries – adopted from XML indexing – over large RDF graphs
in order to facilitate join-ahead pruning. In this paper, we discuss
a different, locality-based, graph summarization approach for RDF
data and highlight its utilization for join-ahead pruning in a dis-
tributed SPARQL engine. Based on our recently developed TriAD
engine, we present a detailed comparison of processing techniques
for these graph summaries over the synthetic LUBM benchmark.

1. INTRODUCTION
The Resource Description Framework (RDF) and the SPARQL que-
ry language1 are two recent standards recommended by the W3C
for representing and querying linked data on the Web. RDF has
become the main standard for semantic data and meanwhile found
a wide adoption in the Database as well as the Semantic Web com-
munities. With the increasing number of both commercial and non-
commercial organizations, which actively publish RDF data, the
amount and diversity of openly available RDF repositories is grow-
ing at an unprecedented pace. DBpedia2, for example, which serves
as the main hub for the Linked Open Data3 (LOD) initiative, cur-
rently consists of more than 1 billion RDF triples. As of 2011, the
entire LOD cloud already consisted of more than 31 billion RDF
triples which are distributed across more than 300 LOD sources.

Consequently, and in response to this explosion of RDF data that
is available on both the surface and the deep Web, much research

1http://www.w3.org/TR/rdf-sparql-query/
2http://dbpedia.org
3http://linkeddata.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWIM’14, June 27, 2014 - Snowbird, Utah, USA.
Copyright 2014 ACM 978-1-4503-2994-1/14/06 ...$15.00
http://dx.doi.org/10.1145/2630602.2630610 .

effort has been invested recently in the development of scalable,
both centralized and distributed, techniques for indexing RDF data
and for processing SPARQL queries. Among the centralized ap-
proaches, native RDF stores like Jena, Sesame, HexaStore [12],
SW-Store [1], MonetDB-RDF [11], RDF-3X [7, 8], BitMat [2]
and TripleBit [13] have been carefully designed to keep pace with
the increasing scale at which RDF collections are available. Several
distributed architectures [10, 15, 4, 14] have been proposed in the
recent past for the scalable management of large RDF collections.

Due to the row-oriented output required by the SPARQL 1.0 and
1.1 standards, most of these systems directly follow a relational ap-
proach for joining triples. One of the main challenges that persist
with relational (i.e., join-based) approaches is that – even for se-
lective queries – often large intermediate relations are generated.
This is mainly due to sub-optimal join orders determined by the
plan generator which may rely on insufficient or inaccurate statis-
tics. Several methods have been proposed to overcome this chal-
lenge. One approach, used for example in RDF-3X, is Sideways
Information Passing (SIP). SIP shares variable bindings across dif-
ferent join operators in a query plan, thus aiming to prune unnec-
essary intermediate (i.e., “dangling”) triples as early as possible.
On the other hand, systems like [2] (centralized) and [14] (dis-
tributed) follow a two-staged approach to reduce the number of
dangling triples. The first stage, called pruning stage, is performed
over the RDF data graph by using a light-weight graph exploration
technique that finds the possible bindings for the query variables.
These bindings are then joined using a relational approach, which
results in the final in row-oriented output. A drawback of the for-
mer runtime SIP approach is the particular way in which bindings
are communicated among join operators. This limits its benefit to
only certain types of queries (e.g., “star” queries), but remains less
effective for path-like or mixed star/path queries which are very
common in SPARQL.

Recently, a few approaches [6, 9, 16] have been proposed to ad-
dress the limitations of two-staged RDF systems. These approaches
use bisimulation-based data summaries in the first stage in order
to prune dangling triples. Although the generated summaries are
relatively small compared to the actual RDF graph, they aim to re-
tain the principal structural characteristics of the original RDF data
graph. Thus, these approaches have been shown to perform better
than the two-staged approaches for a wide class of queries. One
of the main problems with bisimulation-based summaries is that
with an increasing depth (to increase pruning), the number of pos-
sible graph synopses grows exponentially, and thus the summary
information may quickly grow as large the original data. Thus,
these approaches limit bisimulation to a few levels, which in turn
limits the overall pruning effectiveness. To overcome these chal-
lenges, our recently proposed TriAD [3] engine employs a locality-

http://www.w3.org/TR/rdf-sparql-query/
http://dbpedia.org
http://linkeddata.org
http://dx.doi.org/10.1145/2630602.2630610

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

Figure 1: TriAD system architecture
based approach towards summarizing large RDF data graphs. In
this paper, we thus provide a detailed discussion of the summariza-
tion framework employed TriAD, and we provide a detailed experi-
mental comparison of three processing techniques for the summary
graph, which are based on 1-hop and full graph exploration, and on
relational joins, respectively.

2. TRIAD ARCHITECTURE
In this section, we provide an overview the TriAD architecture,

which encompasses graph summarization to facilitate join-ahead
pruning in a distributed setting. TriAD is a distributed shared-
nothing RDF engine which in principle follows a classic master-
slave architecture. All inter-node communication is based on an
asynchronous Message Passing protocol that is coupled with a par-
allel query processing framework. The details of the architecture
are shown in Figure 1. The master node in TriAD performs the task
of RDF data and query optimization, and it performs a first-stage
processing of queries over the summary graph. The slaves perform
the second-stage processing of queries over the RDF data graph
to obtain detailed pruning information from the summary graph in
the first stage. Details about index construction, query optimiza-
tion and processing in TriAD can be found in [3]. In the following,
we focus on the graph summarization and its integration within the
TriAD query processing workflow.

3. GRAPH SUMMARIZATION
We argue that join-ahead pruning is one of the main factors that

influence the performance of a relational system, which holds es-
pecially also for an RDF engine. Here, we discuss a join-ahead
pruning technique via graph summarization. A summary graph for
a given RDF data graph retains the principal characteristics of the
data graph in more concise form. By summarizing the data, large
portions of irrelevant data items can be pruned by first querying the
summary graph and then processing the query over the remaining,
pruned data graph. Before discussing the different approaches of
summarizing RDF graphs, we first formally define the RDF sum-
mary as follows.

Definitions
DEFINITION 1. An RDF data graph GD(VD, ED, L, φD) is a

directed, labeled multi-graph where VD is the set of data nodes,
ED is the set of directed edges connecting the nodes in VD , L is
the set of edge and node labels, and φD is a labeling function with
φD : VD ∪ ED → L s.t. ∀vi, vj ∈ VD , vi 6= vj , it holds that
φD(vi) 6= φD(vj).

DEFINITION 2. An RDF summary graph GS(VS , ES , L, φS)
for a given RDF data graph GD(VD, ED, L, φD) again is a la-

1:Barack Obama

2:Democratic Party 1:Grammy Award3:Honolulu

4:Singer

4:USA

3:Ronald Reagan

1:Los Angeles4:Tampico

2:Lady Gaga

3:New York

2:Jimmy Carter

4:Plains

2:Republican Party

3:Nobel Peace prize

1:bornIn

6:won

6:won
5:memOf

3:isA

4:locIn

5:memOf

1:bornIn 2:diedIn

4:locIn
4:locIn

3:isA

6:won
1:bornIn

4:locIn

1:bornIn

4:locIn

6:won

5:memOf

6:w
on

ß1 ß2

ß3

ß4

ß1 ß2

ß3 ß4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn
locIn

bornIn

memOf,diedIn

locIn

won,bornIn

won

locIn,
memOf

(a) (b)

Figure 2: (a) RDF data graphGD with locality-based partition-
ing; and (b) summary graph GS for GD

beled, directed multi-graph where each node v ∈ VS , with v ⊆
VD , called supernode, is a subset of nodes in VD , and each edge
e ∈ ES , called superedge, connects two supernodes in VS , and
φS : ES → L maps each superedge e ∈ ES to a label in L.

Bisimulation vs. Locality-based Summary
There are many ways in which a summary graph for an RDF graph
can be generated. Recently proposed centralized systems such as [6,
9, 16] extend the idea of bisimulation-based summaries which have
been used for XML data to RDF graph summarization. Bisimu-
lation-based summaries are generated by grouping structurally sim-
ilar nodes of an RDF graph into a single supernode. The structural
similarity of two nodes is recursively defined as a function of the
similarity of their neighborhood. Although bisimulation captures
the structural information of an RDF graph, the size of the gen-
erated summary is highly dependent on the extent of the neigh-
borhood (or recursion) considered. Thus, in the worst case, a full
bisimulation may result in summaries that are as large as the orig-
inal RDF graph. In practice, the summary is generated by limiting
the depth to a few hops. This way, one can restrict the summary
to a smaller size, however at the cost of pruning effectiveness, thus
making this kind of summaries effective only for queries where
predicates are constants and all the subjects/objects are variables.
In real world applications, queries with constant subjects/objects
are commonly seen and to effectively handle them, a locality-based
summarization is more helpful than one obtained via bisimulation.

For the RDF graph shown in Figure 2 (a), its locality-based sum-
mary is shown in (b), where the nodes that are in the neighborhood
are grouped together into a supernode. Thus with the constant sub-
ject/object k in the query, only the supernodes that in the neigh-
bourhood of the supernode that contain k are considered, which
helps in pruning irrelevant portions of the data graph.

Generating & Indexing Summaries
In TriAD, we use a non-overlapping graph partitioning algorithm
(like METIS [5]) to generate a locality-based summary. Although
METIS is one of the most scalable graph partitioning tools avail-
able, the sheer size of RDF graphs prevents us to use METIS di-
rectly on the RDF data graph. Instead, to reduce the size of the RDF
data, we first remove non-influential edges in the RDF graph, i.e.,
edges that connect string literals. This way, the size of the graph
is reduced considerably without affecting the min-cut optimality
used in METIS. The partition information (〈node, part_id〉) ob-
tained from METIS is then used to generate the summary triples. If
〈s, p, o〉 is a data triple and ß1, ß2 are the partition ids of s, o, then
〈ß1, p,ß2〉 forms the summary triple for 〈s, p, o〉. The generated
summary triples are then indexed at the master node. To support an

efficient exploratory search over this summary index, we index the
summary triples in adjacency-list form (i.e., using two PSO, POS
permutations). These indexes are then lexicographically sorted to
facilitate efficient lookups via binary search. In addition to these in-
dexes, we also compute various statistics over the summary graph,
which are used for determining the best graph exploration order
during query processing.

Choosing the Number of Partitions
A difficult challenge in generating the locality-based summary lies
in determining the optimal number of partitions that minimizes
the overall query cost of our two-staged processing approach. In
TriAD, we formulate this problem as a convex optimization prob-
lem with the goal of identifying the optimal number of partitions,
thus reducing the overall query cost also in a distributed setting.
We arrived at a simple equation for determining the number of par-
titions |VS |, which is expressed in terms of the number of triples
|ED|, the average degree d of each node in GD , and the number of
physical compute nodes n.

VS :=

√
λ|ED|
d× n (1)

Here, λ is a tuning parameter that is obtained from an empirical
analysis of the hardware setup and expected query workload. More
details about the convex formulation and the tuning parameter λ
can be found in [3].

4. JOIN-AHEAD PRUNING
As described earlier, query processing in TriAD is performed

in two-stages. The first stage – the pruning stage – is performed
over the summary graph. The goal of this stage is to prune dan-
gling triples by identifying the bindings for the join variables in
the query, and to later on use these bindings to generate results via
the relational joins. Note that, in TriAD, we use a summary graph
and the bindings that we obtain are supernode bindings which con-
tain a contiguous block of triples in our actual SPO indexes. For
finding the bindings, we perform a graph exploration over the sum-
mary graph. The reason behind choosing graph exploration over
a conventional join-based approach is that, in this first stage, we
aim to just detect the possible variable bindings. Further, by us-
ing an exploration-based approach, we can avoid generating large
intermediate relations which would not easily be possible with re-
lational joins.

Graph Exploration
Unlike in Trinity.RDF [14], the graph exploration algorithm we use
performs a full exploration rather than a simpler 1-hop graph explo-
ration. Under a full graph exploration, we add a supernode binding
to a join variable only if there exists at least one binding for all
the other variables in the query, such that all join conditions are
satisfied. This way, many false-positive bindings can be pruned
in comparison to a 1-hop exploration. The disadvantage of a full
graph exploration is that it is more expensive compared to a 1-hop
exploration but, since the summary graph is relatively small com-
pared to the data graph, the disadvantages are compensated with
the overall savings in query processing times.

Example. Consider the RDF data shown in Figure 2 together with
the following SPARQL query:

R1 : ?person <bornIn> ?city.
R2 : ?city <locatedIn> USA.
R3 : ?person <won> ?prize.
R4 : ?prize <hasName> ?name.

For a fixed exploration order R1, R2, R3, R4, the full graph
exploration works as follows. We start with relation R1 and find
the first bindings for join variables ?person and ?city . Then
the binding for ?city is checked with the condition that it is lo-
cated in USA in relation R2. Further, we check in R3 whether
?person binding has won any ?prize, and the ?prize bind-
ing has at least one name ?name binding in R4. If, at any stage,
any such binding does not satisfy the query constraints, we propa-
gate this information backwards to prune also the other variables’
bindings . This back-propagation is not performed in the 1-hop ex-
ploration used in [14]. For the example graph shown in Figure 2(a),
the obtained bindings for the 1-hop and full graph exploration are
as follows.

1-Hop Exploration
?person: Barack Obama, Jimmy Carter, Lady Gaga
?city: Honolulu, Tampico, Plains, New York
?prize: Nobel Peace Prize, Grammy Award
?name: “Nobel Peace Prize”, “Grammy Award”

Full Exploration
?person: Barack Obama, Jimmy Carter, Lady Gaga
?city: Honolulu, Plains, New York
?prize: Nobel Peace Prize, Grammy Award
?name: “Nobel Peace Prize”, “Grammy Award”

Exploration Optimization
The exploration order has a high impact on the efficiency of graph
exploration. In TriAD, we determine the best exploration order by
using stored summary statistics and employ a bottom-up dynamic
programming algorithm which minimizes the costs of the explo-
ration order. At each DP step, we calculate the cost of the partial
plan considered so far and prune whenever the current branch can-
not contribute to the plan with the least cost anymore. The cost
of an entire exploration plan that is represented by a fixed order of
triple patterns R1 , . . . , Rn can thus be estimated as follows.

Cost(〈R1, . . . , Rn〉) ∝

Card(R1) +

n∑
i=2

(
Card(Ri)

i∏
j=1

Sel(Ri, Rj)
) (2)

Here, Card(Ri) denotes the cardinality of query pattern Ri, and
Sel(Ri, Rj) is the join-selectivity of two patterns Ri, Rj , i.e., the
ratio of the number of triples joined over the size of the cross prod-
uct between the triples in Ri and Rj .

5. EVALUATION
For an evaluation of the pruning effectiveness of the summary

graph, we focus on a centralized setup of TriAD, and we com-
pare to four state-of-the-art RDF engines, RDF-3X [7], BitMat [2],
MonetDB [11] and Trinity.RDF [14] (the latter being deployed on a
comparable centralized setting). For a detailed evaluation of TriAD
under a distributed setting, we refer to [3].

We used the widely popular LUBM4 benchmark (in N3 format)
and generated the data using UBA 1.75. Concerning queries, we
used the benchmark queries published in [2] which are also used
by Trinity.RDF. For constructing the summary graph, we employ
METIS 5.16 as our graph partitioner. To achieve a better perfor-
mance during partitioning, we ignored edges connecting string lit-
erals, resulting in both space and time savings.

4http://swat.cse.lehigh.edu/projects/lubm/
5http://www.l3s.de/~minack/rdf-fulltext-benchmark/
6http://glaros.dtc.umn.edu/gkhome/metis/metis/download

http://swat.cse.lehigh.edu/projects/lubm/
http://www.l3s.de/~minack/rdf-fulltext-benchmark/
http://glaros.dtc.umn.edu/gkhome/metis/metis/download

TriAD TriAD-SG (17K) Trinity RDF-3X MonetDB BitMat
Full GE 1-hop GE RJ .RDF (cold) (warm) (cold) (warm) (cold) (warm)

Q1 427 97 412 382 281 38,802 27,702 10,600 1,500 1,078 1,053
Q2 117 140 139 137 132 32,936 347 279 174 3,055 3,030
Q3 210 31 75 321 110 27,692 27,678 10,900 1,700 47 40
Q4 2 1 3.1 2.3 5 76 2 39 25 5,421 5,357
Q5 0.5 0.2 0.8 0.9 4 1 1 80 23 6 5.8
Q6 19 1.8 2.5 3 9 59 7 130 51 132 128
Q7 693 711 712 1447 630 35,485 1,086 10,100 1,700 1,642 1,583

Geo.-
Mean 39 14 29 40 46 1,280 170 748 216 277 362

Table 1: LUBM-160 – Query processing times (in ms)

Results. Table 1 shows the runtimes of TriAD and TriAD-SG
(TriAD with the summary graph pruning enabled) against the com-
peting engines over the LUBM 160 dataset with about 27 million
triples. To better interpret the results, we categorized the queries
Q1–Q7 into 3 groups – non-selective (Q2), selective in both in-
put and output size (Q4,Q5,Q6), and selective only in the output
size (Q1,Q3,Q7). We can observe that for the selective queries
Q4,Q5,Q6, the advantage of join-ahead pruning by the summary
graph (TriAD-SG - Full GE) boosts the performance of TriAD. For
queries Q1,Q3,Q7, which are selective only in their final output
size, TriAD generates large intermediate results thus being slower
than Trinity.RDF. This issue is addressed in TriAD-SG (Full GE)
via join-ahead pruning and the full graph exploration. For query
Q2, which is a non-selective, single join query, the benefits of the
summary graph are however not noticeable, and with its additional
overhead TriAD-SG actually becomes slower than TriAD.

Summary size Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geo-.Mean

10K 153 141 30 0.8 0.5 1.5 692 16
17K 97 140 31 0.7 0.2 1.8 711 14
20K 86 140 36 0.9 0.5 1.5 702 16

Table 2: Impact of summary graph partitions for LUBM-160

Impact of Summary Graph Sizes
The number of summary graph partitions directly affects the per-
formance of the system as highlighted in Table 2. With a smaller
number of partitions, each supernode comprises of many triples.
Thus, even though the join-ahead pruning can be done quickly over
smaller summary graphs, due to large supernode sizes, the over-
all number of pruned tuples remains low, thus making the second-
stage query processing considerably more expensive. Thus, the
right choice of the summary graph size has a crucial impact on
the overall performance.

Approach Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geo-.Mean

Full GE 22 3 22 0.03 0.003 0.5 82 1.3
1-hop GE 13 4 13 1.4 0.3 1.8 17 3.9

RJ 312 6 312 1.4 0.4 1.6 767 16.3

Table 3: 1-hop and full graph exploration (GE) vs. relational
joins (RJ) for LUBM-160

Graph Exploration vs. Relational Joins
Finally, we compared three approaches for processing the summary
graph: (1) full graph exploration (Full GE), (2) 1-hop graph explo-
ration (1-hop GE), (3) a conventional form of relational joins (RJ).
Table 3 shows the runtime performance of the three approaches
over a summary graph with 17K partitions for the LUBM 160 data-
set. We can clearly observe that, in a relational approach, there is
a penalty incurred for generating large intermediate relations. This
is avoided entirely in graph exploration (Full GE) without increas-
ing the number of false-positive bindings. On the other hand, as
expected, the 1-hop exploration performs faster than the full ex-
ploration (Full GE) for the complex queries Q1,Q3,Q7, but it also

retains a lot of false positives, which in turn makes the second stage
of processing more costly (Table 1).

6. CONCLUSIONS
In this paper, we presented a detailed discussion of graph sum-

marization for the purpose of join-ahead pruning in large RDF graphs.
Specifically, we discussed details of generating and indexing the
summary graph, and how to leverage the summary graph for ef-
fective join-ahead pruning. We build on the TriAD framework to
demonstrate the effect of join-ahead pruning via a locality-based
form of graph summarization. In both, the centralized and dis-
tributed settings of TriAD, we implemented the summary graph at
the master node and used a two-staged query processing strategy
to achieve a better overall query processing performance. In fu-
ture work, we plan to compare different summarization approaches
based on query workloads and bisimulation, and to compare its ef-
fectiveness with this still rather simple (i.e., locality-based) form of
summarization.

7. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach.

SW-Store: A vertically partitioned DBMS for Semantic Web data
management. The VLDB Journal, 18(2), 2009.

[2] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix "Bit"
loaded: A scalable lightweight join query processor for RDF data. In
WWW, 2010.

[3] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. TriAD: A
Distributed Shared-Nothing RDF Engine Based on Asynchronous
Message Passing. SIGMOD, 2014.

[4] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of
Large RDF Graphs. PVLDB, 4(11), 2011.

[5] G. Karypis and V. Kumar. Metis - unstructured graph partitioning and
sparse matrix ordering system, version 2.0. Technical report, 1995.

[6] T. Milo and D. Suciu. Index Structures for Path Expressions. In
ICDT. 1999.

[7] T. Neumann and G. Weikum. The RDF-3X engine for scalable
management of RDF data. The VLDB Journal, 19(1), 2010.

[8] T. Neumann and G. Weikum. x-RDF-3X: Fast Querying, High
Update Rates, and Consistency for RDF Databases. PVLDB, 2010.

[9] F. Picalausa, Y. Luo, G. H. L. Fletcher, J. Hidders, and
S. Vansummeren. A structural approach to indexing triples. In
ESWC, 2012.

[10] K. Rohloff and R. E. Schantz. Clause-iteration with MapReduce to
scalably query datagraphs in SHARD graph-store. In DIDC, 2011.

[11] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold.
Column-store support for RDF data management: not all swans are
white. PVLDB, 1(2), 2008.

[12] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing
for semantic web data management. PVLDB, 1(1), 2008.

[13] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu. TripleBit: a Fast
and Compact System for Large Scale RDF Data. PVLDB, 6(7), 2013.

[14] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed
graph engine for web scale RDF data. PVLDB, 6(4), 2013.

[15] X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE: Towards
scalable I/O efficient SPARQL query evaluation on the cloud. In
ICDE, 2013.

[16] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore: Answering
SPARQL Queries via Subgraph Matching. PVLDB, 4(8), 2011.

