1.1 Introduction

Overview · Data Sources and Applications · Problem Statement
Overview
Presenters

Will Chang
University of California at San Diego, USA
wychang@cs.ucsd.edu

Hao Li
ETH Zürich, EPFL Lausanne Switzerland
hao@inf.ethz.ch

Niloy Mitra
KAUST, Saudi Arabia
IIT Delhi, India
iloy@cse.iitd.ernet.in

Mark Pauly
EPFL Lausanne Switzerland
mark.pauly@epfl.ch

Michael Wand
Saarland University, MPI Informatik, Germany
mwand@mpi-inf.mpg.de
Tutorial Outline

Overview

- **Part I:** Introduction (1.25h)
- **Part II:** Local Registration (1.5h)
- **Part III:** Global Matching (1.75h)
- **Part IV:** Animation Reconstruction (1.25h)
- Conclusions and Wrap up (0.25h)
Part I: Introduction

Introduction (Michael)
- Problem statement and motivation
- Example data sets and applications

Differential geometry and deformation modeling (Mark)
- Differential geometry background
- Brief introduction to deformation modeling

Kinematic 4D surfaces (Niloy)
- Rigid motion in space-time
- Kinematic 4D surfaces
Part II: Local Registration

ICP and of rigid motions (Niloy)

- Rigid ICP, geometric optimization perspective
- Dynamic geometry registration (Intro)

Deformable Registration (Michael)

- A variational model for deformable shape matching
- Variants of deformable ICP

Subspace Deformation, Robust Registration (Hao)

- Subspace deformations / deformation graphs
- Robust local matching
Part III: Global Matching

Features (Will)
- Key point detection and feature descriptors

Isometric Matching and Quadratic Assignment (Michael)
- Extrinsic vs. intrinsic geometry
- Global matching techniques with example algorithms

Advanced Global Matching (Will)
- Global registration algorithms

Probabilistic Techniques (Michael)
- Ransac and forward search

Articulated Registration (Will)
- Articulated registration with graph cuts
Dynamic Geometry Registration (Niloy)
 • Multi-piece alignment

Deformable Reconstruction (Michael)
 • Basic numerical algorithm
 • Urshape/Deformation Factorization

Improved Algorithm (Hao)
 • Efficient implementation
 • Detail transfer
Conclusions and Wrap-up (Mark)

• Conclusions
• Future work and open problems

In the end:
• Q&A session with all speakers
• But feel free to ask questions at any time
Problem Statement and Motivation
Deformable Shape Matching

What is the problem?

Settings:

- We have two or more shapes
- The same object, but deformed
Deformable Shape Matching

What is the problem?

Settings:
- We have two or more shapes
- The same object, but deformed

Question:
- What points correspond?

Data courtesy of C. Stoll, MPI Informatik
Applications

Why is this an interesting problem?

Building Block:

- Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)
Applications

Why is this an interesting problem?

Building Block:

- Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)
Deformable Scan Registration

Scan registration

• Rigid registration is standard

Why deformation?

• Scanner miscalibrations
 ▪ Sometimes unavoidable, esp. for large acquisition volumes

• Scanned Object might be deformable
 ▪ Elastic / plastic objects

• In particular: Scanning people, animals
 ▪ Need multiple scans
 ▪ Impossible to maintain constant pose
Example: Full Body Scanner

Full Body Scanning
Applications

Why is this an interesting problem?

Building Block:

- Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)
3D Animation Scanner

New technology
• 3D animation scanners
• Record 3D video
• Active research area

Ultimate goal
• 3D movie making
• New creative perspectives
Structured Light Scanners

- space-time stereo
 courtesy of James Davis, UC Santa Cruz

- color-coded structured light
 courtesy of Phil Fong, Stanford University

- motion compensated structured light
 courtesy of Sören König, TU Dresden
Passive Multi-Camera Acquisition

segmentation & belief propagation

[Zitnick et al. 2004]
Microsoft Research

photo-consistent space carving

Christian Theobald
MPI-Informatik
Time-of-Flight / PMD Devices

PMD Time-of-flight camera

Minolta Laser Scanner (static)
Animation Reconstruction

Problems

- Noisy data
- Incomplete data (acquisition holes)
- No correspondences
Animation Reconstruction

Remove noise, outliers

Fill-in holes (from all frames)

Dense correspondences
Applications

Why is this an interesting problem?

Building Block:

- Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)
Statistical Shape Spaces

Morphable Shape Models

- Scan a large number of individuals
 - Different pose
 - Different people
- Compute correspondences
- Build shape statistics (PCA, non-linear embedding)

Courtesy of N. Hassler, MPI Informatik
Statistical Shape Spaces

Numerous Applications:
- Fitting to ambiguous data (prior knowledge)
- Constraint-based editing
- Recognition, classification, regression

Building such models requires correspondences

Courtesy of N. Hassler, MPI Informatik
Data Characteristics
Scanner Data – Challenges

“Real world data” is more challenging

- 3D Scanners have artifacts

Rules of thumb:

- The faster the worse (real time vs. static scans)
- Active techniques are more accurate
 (passive stereo is more difficult than laser triangulation)
- There is more than just “Gaussian noise”...
Challenges

“Noise”

• “Standard” noise types:
 ▪ Gaussian noise (analog signal processing)
 ▪ Quantization noise

• More problematic: Structured noise
 ▪ Structured noise (spatio-temporally correlated)
 ▪ Structured outliers
 ▪ Reflective / transparent surfaces

• Incomplete Acquisition
 ▪ Missing parts
 ▪ Topological noise
Challanges

“Noise”

• “Standard” noise types:
 - Gaussian noise (analog signal processing)
 - Quantization noise

• More problematic: Structured noise
 - Structured noise (spatio-temporally correlated)
 - Structured outliers
 - Reflective / transparent surfaces

• Incomplete Acquisition
 - Missing parts
 - Topological noise
Challenges

“Noise”

• “Standard” noise types:
 ▪ Gaussian noise (analog signal processing)
 ▪ Quantization noise

• More problematic
 ▪ Structured noise (spatio-temporally correlated)
 ▪ Structured outliers
 ▪ Reflective / transparent surfaces

• Incomplete Acquisition
 ▪ Missing parts
 ▪ Topological noise
Challenges

“Noise”

• “Standard” noise types:
 ▪ Gaussian noise (analog signal processing)
 ▪ Quantization noise

• More problematic
 ▪ Structured noise (spatio-temporally correlated)
 ▪ Structured outliers
 ▪ Reflective / transparent surfaces

• Incomplete Acquisition
 ▪ Missing parts
 ▪ Topological noise
Challenges

“Noise”

• “Standard” noise types:
 ▪ Gaussian noise (analog signal processing)
 ▪ Quantization noise

• More problematic
 ▪ Structured noise (spatio-temporally correlated)
 ▪ Structured outliers
 ▪ Reflective / transparent surfaces

• Incomplete Acquisition
 ▪ Missing parts
 ▪ Topological noise
Outlook
This Tutorial

Different aspects of the problem:

• Shape deformation and matching
 ▪ How to quantify deformation?
 ▪ How to define deformable shape matching?

• Local matching
 ▪ Known initialization

• Global matching
 ▪ No initialization

• Animation Reconstruction
 ▪ Matching temporal sequences of scans
Problem Statement:
Pairwise Deformable Matching
Problem Statement

Given:

- Two surfaces \(S_1, S_2 \subseteq \mathbb{R}^3 \)
- Discretization:
 - Point clouds \(S = \{s_1, \ldots, s_n\}, s_i \in \mathbb{R}^3 \) or
 - Triangle meshes

We are looking for:

- A deformation function \(f_{1,2}: S_1 \rightarrow \mathbb{R}^3 \) that brings \(S_1 \) close to \(S_2 \)
Problem Statement

We are looking for:

- A deformation function $f_{1,2}: S_1 \rightarrow \mathbb{R}^3$ that brings S_1 close to S_2

Open Questions:

- What does “close” mean?
- What properties should f have?

Next part:

- We will now look at these questions more in detail