4.2 Animation Reconstruction

Basic Algorithm · Efficiency: Urshape Factorization
Overview & Problem Statement
Overview

Two Parallel Topics
- Basic algorithms
- Two systems as a case study

Animation Reconstruction
- Problem Statement
- Basic algorithm (original system)
 - Variational surface reconstruction
 - Adding dynamics
 - Iterative Assembly
 - Results
- Improved algorithm (revised system)
Real-time Scanners

- space-time stereo
 courtesy of James Davis, UC Santa Cruz

- color-coded structured light
 courtesy of Phil Fong, Stanford University

- motion compensated structured light
 courtesy of Sören König, TU Dresden
Animation Reconstruction

Problems

- Noisy data
- Incomplete data (acquisition holes)
- No correspondences
Animation Reconstruction

Remove noise, outliers

Fill-in holes (from all frames)

Dense correspondences
Animation Reconstruction
Surface Reconstruction
Variational Approach

Variational Approach:

- \(S \) – original model
- \(D \) – measurement data

Variational approach:

\[
E(S | D) \sim E(D | S) + E(S)
\]

measurement prior
3D Reconstruction

Data fitting

\[E(D \mid S) \sim \sum_i \text{dist}(S, d_i)^2 \]

Prior: Smoothness

\[E_s(S) \sim \int_S \text{curv}(S)^2 \]

\[D \]

\[S \]
Implementation: Point-based model

- Our model is a set of points
- “Surfels”: Every point has a latent surface normal
- We want to estimate position and normals
Data Term – E(D|S)

Data fitting term:

- Surface should be close to data
- Truncated squared distance function

\[E_{match}(D, S) = \sum_{data\ texts} \text{trunc}_{\delta}(dist(S, d_i)^2) \]

- Sum of distances\(^2\) of data points to surfel planes
- Point-to-plane: No exact 1:1 match necessary
- Truncation (M-estimator): Robustness to outliers
Priors – P(S)

Canonical assumption: smooth surfaces

- Correlations between neighboring points
Simple Smoothness Priors:

- Similar surfel normals:
 \[E_{\text{smooth}}^{(1)}(S) = \sum_{\text{surfels neighbors}} \sum \left(n_i - n_{i,j} \right)^2, \|n_i\| = 1 \]

- Surfel positions – flat surface:
 \[E_{\text{smooth}}^{(2)}(S) = \sum_{\text{surfels neighbors}} \sum \left(\mathbf{s}_i - \mathbf{s}_{i,j}, \mathbf{n}(\mathbf{s}_i) \right)^2 \]

- Uniform density:
 \[E_{\text{Laplace}}(S) = \sum_{\text{surfels neighbors}} \sum (\mathbf{s}_i - \text{average})^2 \]

[c.f. Szeliski et al. 93]
Nasty Normals

Optimizing Normals

- Problem: \[E_{\text{smooth}}^{(1)}(S) = \sum_{\text{surfels neighbors}} \sum (n_i - n_{i,j})^2, \quad \text{s.t. } \|n_i\| = 1 \]
- Need unit normals: constraint optimization
- Unconstraint: trivial solution (all zeros)
Nasty Normals

Solution: Local Parameterization

- Current normal estimate
- Tangent parameterization
- New variables u, v
- Renormalize
- Non-linear optimization
- No degeneracies

$$n(u, v) = n_0 + u \cdot \text{tangent}_u + v \cdot \text{tangent}_v$$

[Hoffer et al. 04]
Neighborhoods?

Topology estimation

- Domain of S, base shape (topology)
- Here, we assume this is easy to get
- In the following
 - k-nearest neighborhood graph
 - Typically: $k = 6..20$

Limitations

- This requires dense enough sampling
- Does not work for undersampled data
Numerical Optimization

Task:
• Compute most likely “original scene” S
• Nonlinear optimization problem

Solution:
• Create initial guess for S
 ▪ Close to measured data
 ▪ Use original data
• Find local optimum
 ▪ (Conjugate) gradient descent
 ▪ (Gauss-) Newton descent
3D Examples

3D reconstruction results:

(With discontinuity lines, not used here):
3D Reconstruction Summary

Data fitting:

\[E(D \mid S) \sim \sum_i \text{dist}(S, d_i)^2 \]

Prior: Smoothness

\[E_s(S) \sim \int_S \text{curv}(S)^2 \]

Optimization:

Yields 3D Reconstruction
Animation Reconstruction

Adding the Dynamics
Extension to Animations

Animation Reconstruction

- Not just a 4D version
 - Moving geometry, not just a smooth hypersurface
- Key component: correspondences
- Intuition for “good correspondences”:
 - Match target shape
 - Little deformation
Recap: Correspondences

- Correspondences?
- No shape match
- Too much deformation
- Optimum
Animation Reconstruction

Two additional priors:

Deformation

\[E_d(S) \sim \int_S \text{deform}(S_t, S_{t+1})^2 \]

Acceleration

\[E_a(S) \sim \int_{S,t} \ddot{s}(x, t)^2 \]
Not just smooth 4D reconstruction!

- Minimize
 - Deformation
 - Acceleration
- This is quite different from smoothness of a 4D hypersurface.
Animations

Refined parametrization of reconstruction S

- Surfel graph (3D)
- Trajectory graph (4D)
Discretization

Refined parametrization of reconstruction S

- Surfel graph (3D)
- Trajectory graph (4D)
Discretization

Refined parametrization of reconstruction S

- Surfel graph (3D)
- Trajectory graph (4D)
How to implement...

- The deformation priors?
 - We use one of the models previously developed
- Acceleration priors?
 - This is rather simple...
Recap: Elastic Deformation Model

Deformation model

- Latent transformation $A^{(i)}$ per surfel
- Transforms *neighborhood* of s_i
- Minimize error (both surfels and $A^{(i)}$)
Recap: Elastic Deformation Model

Orthonormal Matrix A_i per surfel (neighborhood), latent variable
Recap: Elastic Deformation Model

Orthonormal Matrix A_j

per surfel (neighborhood), latent variable

$$E_{\text{deform}}(S) = \sum_{\text{surfels}} \sum_{\text{neighbors}} \left[A_i^t (s_i^{(t)} - s_{ij}^{(t)}) - (s_i^{(t+1)} - s_{ij}^{(t+1)}) \right]^2$$
Recap: Unconstrained Optimization

Orthonormal matrices

- Local, 1st order, non-degenerate parametrization:

\[
C_{x_i}^{(t)} = \begin{pmatrix}
0 & \alpha & \beta \\
-\alpha & 0 & \gamma \\
-\beta & -\gamma & 0
\end{pmatrix}
\]

\[A_i = A_0 \exp(C_{x_i}) \]

\[= A_0 (I + C_{x_i}^{(t)})\]

- Optimize parameters \(\alpha, \beta, \gamma\), then recompute \(A_0\)
- Compute initial estimate using \([Horn 87]\)

\[n(u, v) = n_0 + u \cdot \text{tangent}_u + v \cdot \text{tangent}_v\]
Animation Reconstruction

Two additional priors:

Deformation

\[E_d(S) \sim \int_S \text{deform}(S_t, S_{t+1})^2 \]

Acceleration

\[E_a(S) \sim \int_{S,t} \ddot{s}(x, t)^2 \]
Acceleration

Acceleration priors

- Penalize non-smooth trajectories

\[E_{\text{accel}}(A) = \left[s_i^{t-1} - 2s_i^t + s_i^{t+1} \right]^2 \]

- Filters out temporal noise
Optimization

For optimization, we need to know:
- The surfel graph
- A (rough) initialization close to correct solution

Optimization:
- Non-linear continuous optimization problem
- Gauss-Newton solver (fast & stable)

How do we get the initialization?
- Iterative assembly heuristic to build & init graph
Iterative Assembly
Global Assembly

Assumption: Adjacent frames are similar

- Every frame is a good initialization for the next one
- Solve for frame pairs

[frame 11] [frame 12] [frame 13] [frame 14] [frame 15] [frame 16]

[data set courtesy of C. Theobald, MPI-Inf]
Iterative Assembly

Iterative assembly

- Merge adjacent frames
- Propagate hierarchically
- Global optimization (avoid error propagation)
Iterative Assembly

Pairwise alignment

adjacent trajectory sets

aligned frames
Alignment:

- Two frames
- Use one frame as initialization
- Second frame as “data points”
- Optimize

[data set: Zitnick et al., Microsoft Research]
Iterative Assembly

Pairwise alignment

adjacent trajectory sets

aligned frames
Iterative Assembly

Topology stitching

aligned frames

merged topology
Topology Stitching

Recompute Topology

- Recompute kNN/\(\varepsilon\)-graph
- Topology is global

Sanity Check:

- No connection if distance changes

[data set courtesy of S. König, S. Gumhold, TU Dresden]
Iterative Assembly

Topology stitching

aligned frames

merged topology
Iterative Assembly

Problem: incomplete trajectories

merged topology

uninitialized surfels
Iterative Assembly

Hole filling

- uninitialized surfels
- copy from neighbors, optimize
Iterative Assembly

Resampling

hole filled result

remove dense surfels (constant complexity)
Global Optimization

Last step:

- Global optimization
- Optimize over all frames simultaneously

Improve stability: Urshapes

- Connect hidden “latent” frame to all other frames (deformation prior only)
- Initialize with one of the frames
Meshing

Last step: create mesh

- After complete surfel graph is reconstructed
- Pick one frame (or urshape)
- “Marching cubes” meshing

 [Hoppe et al. 92, Shen et al. 04]
- Morph according to trajectories (local weighted sum)

[data set courtesy of O. Schall, MPI Informatik Saarbrücken]
Results
Elephant

deformation & rotation, noise, outliers, large holes

(synthetic data)

frames 20
surfels 49,500
data pts 963,671
preprocessing 6 min 52 sec
reconstruction 4 h 25 min

[Pentium-4, 3.4GHz]
Facial Expression

Dataset courtesy of S. Gumhold, University of Dresden

(high speed structured light scan)
Improved Algorithm
Urshape Factorization
Improved Version

Factorization Model:

- Solving for the geometry in every frame wastes resources
- Store one urshape and a deformation field
 - High resolution geometry
 - Low resolution deformation (adaptive)
- Less memory, faster, and much more stable
- Streaming computation (constant working set)
We have so far...

\[t = 0 \quad t = 1 \quad t = 2 \]

data

trajectories
New: Factorization

t = 0
t = 1
t = 2

data

defformation

S
Components

Variational Model

- Given an initial estimate, improve \textit{urshape} and \textit{deformation}

Numerical Discretization

- \textit{Shape}
- \textit{Deformation}

Domain Assembly

- Getting an initial estimate
- \textit{Urshape} assembly
Components

Variational Model
 • Given an initial estimate, improve *urshape* and *deformation*

Numerical Discretization
 • *Shape*
 • *Deformation*

Domain Assembly
 • Getting an initial estimate
 • *Urshape* assembly
Energy Minimization

Energy Function

\[E(f, S) = E_{\text{data}} + E_{\text{deform}} + E_{\text{smooth}} \]

Components

- \(E_{\text{data}}(f, S) \) – data fitting
- \(E_{\text{deform}}(f) \) – elastic deformation, smooth trajectory
- \(E_{\text{smooth}}(S) \) – smooth surface

Optimize \(S, f \) alternatingly
Data Fitting

\[E_{data}(f, S) \]

Data fitting

- Necessary: \(f_i(S) \approx D_i \)
- Truncated squared distance function (point-to-plane)
Elastic Deformation Energy

\[E_{\text{deform}}(f) \]

Regularization

- Elastic energy
- Smooth trajectories
Surface Reconstruction

Data fitting
• Smooth surface
• Fitting to noisy data
Factorization

$t = 0$ $t = 1$ $t = 2$

data

S

urshape

deformation

f

ff
Components

Variational Model

- Given an initial estimate, improve urshape and deformation

Numerical Discretization

- Shape
- Deformation

Domain Assembly

- Getting an initial estimate
- Urshape assembly
Discretization

Sampling:
- Full resolution geometry
- Subsample deformation
Discretization

Sampling:
- Full resolution *geometry*
 - High frequency
- Subsample *deformation*
 - Low frequency
Discretization

Sampling:

- Full resolution \textit{geometry}
 - High frequency, stored once
- Subsample \textit{deformation}
 - Low frequency, all frames \Rightarrow more costly
Shape Representation:

- Graph of *surfels* (point + normal + local connectivity)
- E_{smooth} – neighboring planes should be similar
- Same as before...
Deformation

Volumetric Deformation Model

- Surfaces embedded in “stiff” volumes
- Easier to handle than “thin-shell models”
- General – works for non-manifold data
Deformation

Deformation Energy

- Keep deformation gradients ∇f as-rigid-as-possible
- This means: $\nabla f^T \nabla f = I$
- Minimize: $E_{deform} = \int_T \int_V | |\nabla f(x,t)^T \nabla f(x,t) - I| |^2 \, dx \, dt$
More Regularization

- Volume preservation: \(E_{\text{vol}} = \int_T \int_V |\det(\nabla f) - 1|^2 \)
 - Stability

- Acceleration: \(E_{\text{acc}} = \int_T \int_V |\partial_t^2 f|^2 \)
 - Smooth trajectories

- Velocity (weak): \(E_{\text{vel}} = \int_T \int_V |\partial_t f|^2 \)
 - Damping
Discretization

How to represent the deformation?

- Goal: efficiency
- Finite basis:
 As few basis functions as possible
Discretization

Meshless finite elements

- Partition of unity, smoothness
- Linear precision
- Adaptive sampling is easy
Meshless Finite Elements

Topology:

• Separate deformation nodes for disconnected pieces
• Need to ensure
 ▪ Consistency
 ▪ Continuity
• Euclidean / intrinsic distance-based coupling rule
 ▪ See references for details
Adaptive Sampling

Adaptive Sampling

- Bending areas
 - Decrease rigidity
 - Decrease thickness
 - Increase sampling density

- Detecting bending areas: residuals over many frames
Components

Variational Model

- Given an initial estimate, improve \textit{urshape} and \textit{deformation}

Numerical Discretization

- \textit{Deformation}
- \textit{Shape}

Domain Assembly

- Getting an initial estimate
- \textit{Urshape} assembly
Urshape Assembly

Adjacent frames are similar

- Solve for frame pairs first
- Assemble urshape step-by-step

[frame data set courtesy of C. Theobald, MPC-VCC]
Hierarchical Merging

data

\(f(S) \)

\(f \)

\(S \)
Hierarchical Merging

data

$f(S)$

f

S
Initial Urshapes

\[f(S) \]

data

\[f \]

\[S \]
Initial Urshapes

data

\[f(S) \]

\[f \]

S
Alignment

\[S \rightarrow f(S) \rightarrow f \rightarrow S \]
Align & Optimize

data

\(f(S) \)

\(f \)

\(S \)
Hierarchical Alignment

\[f(S) \]

\[f(S) \]

\[f \]

\[S \]
Hierarchical Alignment

data

\(f(S) \)

\(f \)

\(S \)
Results
79 frames, 24M data pts, 21K surfels, 315 nodes
98 frames, 5M data pts, 6.4K surfels, 423 nodes
120 frames, 30M data pts, 17K surfels, 1,939 nodes
34 frames,
4M data pts,
23K surfels,
414 nodes
Quality Improvement

old version new result old version new result