
Symmetry: Mobius Voting

Symmetry Detection and Applications
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Given two surfaces, find a set of 
corresponding points.

Correspondence Detection



Symmetry: Mobius Voting

Goal: Find correspondences likely to participate in an  	

     
	

        	

 	

 isometry (=geodesic distance preserving)

Method:    Use the Möbius group as low DOF model for 
	

 	

 	

 non-rigid alignment.

Rationale:
-6 DOF of the Möbius group 
-contains perfect isometries

	

 	

 for devising randomized geometric algorithm.

Mobius Voting



f(zi) = yi, i = 1, 2, 3 ⇒ (a, b, c, d)

Symmetry: Mobius Voting

 All the global 1-1 and onto conformal map on the sphere.

 6 DOF: prescribing three points uniquely defines a Möbius transformation.

Mobius Transformation

f(z) =
az + b

cz + d
, ad− bc �= 0

a, b, c, d ∈ C
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Conformal

search the Möbius group (6 DOF) for your correspondence

isometry

Algorithm for Perfect Isometries
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A B

Uniformization of A Uniformization of B

3 Correct Correspondences

Algorithm for Perfect Isometries
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A B

Algorithm for Perfect Isometries

These “triangle laces”
are the discrete uniformization
To be explained…

3 Correct Correspondences
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A B

Algorithm for Perfect Isometries

3 Incorrect Correspondences

Polynomial time (O(N³) triplets)
for discovering isometries!



Symmetry: Mobius Voting

Even the same shape in different pose is hardly exactly isometric 
so single global Möbius is not enough…

Furthermore, we want to compare different (non-isometric) 
surfaces…

How do we extend to “near isometries?” – with Voting, locality

?

?

Voting for Imperfect Isometries
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Voting for Imperfect Isometries
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Key: Uniformization is local

Voting for Imperfect Isometries
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Right leg

Tail

Voting for Imperfect Isometries
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sample points Uniformization Voting Extracting 
Correspondences

Algorithm Overview
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Algorithm Stages

Sampling points

Uniformization

Scoring Votes
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Algorithm Stages

Sampling points

Uniformization

Scoring Votes



{z1, z2, . . . , zN} {w1, w2, . . . , wN}

Symmetry: Mobius Voting

Sampling points
Sample by:
1) Extrema of Gauss curvature (isometry invariant)
2) Uniform samples

Each point represent a surface patch of “equal 
importance”
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Algorithm Stages

Sampling points

Uniformization

Scoring Votes



Symmetry: Mobius Voting

 Map the surface to space where Möbius is easy to apply and the 
metric represented by density.

 Every genus-0 surface can be mapped globally to a sphere 
conformally (angle preserving).

Uniformization
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Natural definition of discrete conformal: piecewise similarity

Too many constraints: generally not possible.

Mid-edge 
mesh

possible: using Pinkall & Polthier [93] 
conjugate discrete harmonics.

Uniformization

T = s

�
cos θ − sin θ
sin θ cos θ

�



{w1, w2, . . . , wN}

Symmetry: Mobius Voting

Uniformization
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Algorithm Stages

Sampling points

Uniformization

Scoring Votes
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Scoring votes
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measuring deformation error

closest points: 
at least k

The vote value is the 
transportation “effort”: 

Scoring Votes

E(c) =

�

C
d(z, c(z))dλ ≈

�

k

d(zk, c(zk))area(Ωk) d(z, w) =
|z − w|
|1 + z̄w|
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Scoring Votes
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Results
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Difficult cases 

Cross Correspondence
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Pipe Tree
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Random (Castle) Variations
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Random (Playground) Variations
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Bus Stop Variations
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Relations in Man-made Objects
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i) orthogonal/parallel relations; equal angle

ii) placement relation, e.g., coplanar, coaxial

iii) equal length/radii relations
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Parallel/Orthogonal Relations
Online Submission ID: 0233

where d(p, χi) measures the distance of point p, with weight wp,
to the primitive χi [Kanatani 2008]. Then the accumulated data
error is simply given by

�
i
Ed(Pi, χi). Our goal is to minimize

the data error, while aligning to the relations in C
∗
o
. Since we have

only orthogonality constraints at this stage, alignment to any such
constraint c ∈ C

∗
o

between primitives χi, χ j implies gc := nT

i
n j = 0.

Additionally, for each primitive χi, the normal direction satisfies
nT

i
ni = 1. Thus we have the non-linear optimization with equality

constraints,

min
{ni}

�

i

Ed(Pi, χi), such that, gc = 0 ∀c ∈ C
∗
o
, nT

j
n j = 1 ∀ j. (1)

We use a trust region method based on interior point nonlinear pro-320

gramming to solve the optimization [Byrd et al. 2000; Ziena 2010].321

At the end of this stage, we have learned and aligned to orthogonal322

and parallel relations among the primitives.323

b) Equal angle relations. Regular structures are common in324

man-made objects. Such regularity often results in equal angle325

constraints across primitive parts. Unlike parallel or orthogonal326

constraints, the equal angles, however, are not known in advance,327

and are only recovered in course of an optimization. A possible328

approach is to first cluster angles between primitive pairs, and then329

rank the primitive pairs based on the deviation of their mutual an-330

gle with the cluster peaks, similar to the parallel/orthogonal case.331

However, we found this approach to be unreliable due to presence332

of outliers, and spurious peaks in the angle space, e.g., histogram in333

Figure 8 shows why it is challenging to select clustering parameters334

in our setting. Instead, we directly detect and align to equal angle335

relations without committing to a desired angle value, while still336

conforming to existing parallel/orthogonal relations.337

Any angle relation involves a pair of primitive pairs, i.e., four prim-338

itives. Thus, we build a graph Ge, where each vertex represents339

an unordered pair of primitives. In noisy data, spatially distant340

primitives easily pollutes the space with spurious relations. Hence,341

if primitives (χi, χ j) are farther than 10% of larger bounding box342

length, we remove its corresponding node. As a result in most cases343

graph Ge has only O(m) nodes, instead of O(m2). For any pair of344

such vertices, say involving primitive pairs (χi, χ j) and (χk, χl), we345

add an edge based on the similarity of their pairwise angles. Note346

that primitives (χi, χ j) and (χk, χl) can be at arbitrary distances. The347

corresponding relation c is assigned a score sc = −|∠nin j −∠nknl |348

with the associated constraint gc := (nT

i
n j)2 − (nT

k
nl)2 = 0. We349

leave out edges if the subtended angle is more than a threshold,350

5 − 10◦ in our experiments. The threshold depends on the noise351

margin against the separation among the modes in the ground truth352

data, i.e., the regularity of the object. We collect the relations as353

Ce = {c1, c2, . . .}. Now starting with a set C
∗
e
← /0, we progres-354

sively add edges c ∈ Ce, based on decreasing confidence. Exact355

equality relation being transitive, the relation graph should be free356

of cycles. Hence, we only add c →C
∗
e

if no cycles are formed. This357

step significantly decreases the number of graph edges, while re-358

taining the confident ones. Set C
∗
e

typically consists of O(m) edges.359

The set C
∗
e

can still contain conflicts, and hence we use interior360

point nonlinear programming to detect such cases. We test if the361

optimization of the data energy (Equation 1) has any feasible solu-362

tion subject to the constraints C
∗
e
∪C

∗
o
. If no feasible solution exists,363

we take out the relation c ∈ C
∗
e

with the lowest score, and test for364

feasibility again with the remaining set of relations. Typically 1-2365

such relations were dropped in our experiments.366

Figure 8 shows a typical scenario for orientation optimization. The367

initial graph Go has 84 edges, which gets reduced to 21 relations in368

C
∗
o
. In the equal angle stage, 33 initial candidate relations are recov-369

ered and conformed to while minimizing the data error. A feasible370
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Figure 8: Starting with primitives obtained using RANSAC, orien-

tation alignment first conforms to parallel and orthogonal relations.

In addition, in the next stage, equal angle relations are learned and

aligned to. The histogram of angle between primitive pairs (range

[0 − π/2]) progressively gets cleaned along the stages of the algo-

rithm.

solution was found without discarding any relation of Ce. Total time371

taken was 680 sec. with most time spend in the constrained solver.372

3.2 Placement Alignment373

In most man-made objects, coplanarity and coaxial relations carry374

important relation cues about the object parts (see also [Gal et al.375

2009]). We conform to placement relations after orientation align-376

ment, while preserving the orientation relations already aligned to.377

Coaxial relations are simple to detect and enforce. Two primitives378

χi and χ j, e.g., two cylinders, or a cylinder and a cone, are poten-379

tially coaxially aligned if their axes are exactly parallel, since we380

already have orientation alignment. We assign a score to such a381

potential primitive pair based on the distance between their axes,382

namely, sp = −
��|(pi − p j)T · ni|− �pi − p j�

�� with pi, p j being383

points on their respective axes. The relations are collected in a set384

Cp with each of the form gp := ((pi − p j)T · ni)2 − �pi − p j�2 = 0.385

We prune edges when deviation lengths exceed 2− 5% of point set386

bounding box length. Similarly, for aligning a sphere with axis of a387

5

Co = {c1, c2, . . .} C∗
o ⊂ Co
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where d(p, χi) measures the distance of point p, with weight wp,
to the primitive χi [Kanatani 2008]. Then the accumulated data
error is simply given by

�
i
Ed(Pi, χi). Our goal is to minimize

the data error, while aligning to the relations in C
∗
o
. Since we have

only orthogonality constraints at this stage, alignment to any such
constraint c ∈ C

∗
o

between primitives χi, χ j implies gc := nT

i
n j = 0.

Additionally, for each primitive χi, the normal direction satisfies
nT

i
ni = 1. Thus we have the non-linear optimization with equality

constraints,

min
{ni}

�

i

Ed(Pi, χi), such that, gc = 0 ∀c ∈ C
∗
o
, nT

j
n j = 1 ∀ j. (1)

We use a trust region method based on interior point nonlinear pro-320

gramming to solve the optimization [Byrd et al. 2000; Ziena 2010].321

At the end of this stage, we have learned and aligned to orthogonal322

and parallel relations among the primitives.323

b) Equal angle relations. Regular structures are common in324

man-made objects. Such regularity often results in equal angle325

constraints across primitive parts. Unlike parallel or orthogonal326

constraints, the equal angles, however, are not known in advance,327

and are only recovered in course of an optimization. A possible328

approach is to first cluster angles between primitive pairs, and then329

rank the primitive pairs based on the deviation of their mutual an-330

gle with the cluster peaks, similar to the parallel/orthogonal case.331

However, we found this approach to be unreliable due to presence332

of outliers, and spurious peaks in the angle space, e.g., histogram in333

Figure 8 shows why it is challenging to select clustering parameters334

in our setting. Instead, we directly detect and align to equal angle335

relations without committing to a desired angle value, while still336

conforming to existing parallel/orthogonal relations.337

Any angle relation involves a pair of primitive pairs, i.e., four prim-338

itives. Thus, we build a graph Ge, where each vertex represents339

an unordered pair of primitives. In noisy data, spatially distant340

primitives easily pollutes the space with spurious relations. Hence,341

if primitives (χi, χ j) are farther than 10% of larger bounding box342

length, we remove its corresponding node. As a result in most cases343

graph Ge has only O(m) nodes, instead of O(m2). For any pair of344

such vertices, say involving primitive pairs (χi, χ j) and (χk, χl), we345

add an edge based on the similarity of their pairwise angles. Note346

that primitives (χi, χ j) and (χk, χl) can be at arbitrary distances. The347

corresponding relation c is assigned a score sc = −|∠nin j −∠nknl |348

with the associated constraint gc := (nT

i
n j)2 − (nT

k
nl)2 = 0. We349

leave out edges if the subtended angle is more than a threshold,350

5 − 10◦ in our experiments. The threshold depends on the noise351

margin against the separation among the modes in the ground truth352

data, i.e., the regularity of the object. We collect the relations as353

Ce = {c1, c2, . . .}. Now starting with a set C
∗
e
← /0, we progres-354

sively add edges c ∈ Ce, based on decreasing confidence. Exact355

equality relation being transitive, the relation graph should be free356

of cycles. Hence, we only add c →C
∗
e

if no cycles are formed. This357

step significantly decreases the number of graph edges, while re-358

taining the confident ones. Set C
∗
e

typically consists of O(m) edges.359

The set C
∗
e

can still contain conflicts, and hence we use interior360

point nonlinear programming to detect such cases. We test if the361

optimization of the data energy (Equation 1) has any feasible solu-362

tion subject to the constraints C
∗
e
∪C

∗
o
. If no feasible solution exists,363

we take out the relation c ∈ C
∗
e

with the lowest score, and test for364

feasibility again with the remaining set of relations. Typically 1-2365

such relations were dropped in our experiments.366

Figure 8 shows a typical scenario for orientation optimization. The367

initial graph Go has 84 edges, which gets reduced to 21 relations in368

C
∗
o
. In the equal angle stage, 33 initial candidate relations are recov-369

ered and conformed to while minimizing the data error. A feasible370
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Figure 8: Starting with primitives obtained using RANSAC, orien-

tation alignment first conforms to parallel and orthogonal relations.

In addition, in the next stage, equal angle relations are learned and

aligned to. The histogram of angle between primitive pairs (range

[0 − π/2]) progressively gets cleaned along the stages of the algo-

rithm.

solution was found without discarding any relation of Ce. Total time371

taken was 680 sec. with most time spend in the constrained solver.372

3.2 Placement Alignment373

In most man-made objects, coplanarity and coaxial relations carry374

important relation cues about the object parts (see also [Gal et al.375

2009]). We conform to placement relations after orientation align-376

ment, while preserving the orientation relations already aligned to.377

Coaxial relations are simple to detect and enforce. Two primitives378

χi and χ j, e.g., two cylinders, or a cylinder and a cone, are poten-379

tially coaxially aligned if their axes are exactly parallel, since we380

already have orientation alignment. We assign a score to such a381

potential primitive pair based on the distance between their axes,382

namely, sp = −
��|(pi − p j)T · ni|− �pi − p j�

�� with pi, p j being383

points on their respective axes. The relations are collected in a set384

Cp with each of the form gp := ((pi − p j)T · ni)2 − �pi − p j�2 = 0.385

We prune edges when deviation lengths exceed 2− 5% of point set386

bounding box length. Similarly, for aligning a sphere with axis of a387
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Wheel Dataset
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Figure 14: Cylinder, plane, and sphere primitives are aligned using extracted coaxis, coplanar, parallel/orthogonal axes, equal angle as well

as equal length constraints. They converge to the final model after two iterations of RANSAC fitting and constraint optimization. We overlap

the final result on the initial RANSAC results for comparison; the histograms demonstrate the effect in the primitive pair angle space.
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Figure 13: Global alignment of primitives involving parallel axes,

coplanarity, coaxial, and equal length constraints on the wheel

model, while fitting to the scanned data. In this case, the coaxial

and equality relations, lead to a hierarchy based on the mutual

relations and spatial proximity among the primitives. We show

an exploded view of one of the subcomponents along its common

axis. RANSAC primitives have pairwise angle histogram in range

[0, π/6], while after global alignment all pairwise angles vanish;

the pairwise plane distance histogram also significantly improves.

This demonstrates our global prior that if primitives are in near506

alignment, they are likely to be in exact alignment.507

The clutch model, Figure 9, is challenging given the small features,508

and the poor quality of the scan, due to the dark material color (we509

were not allowed to paint the model white). Even on this sparse510

dataset, our method correctly detected various relations, hinting at511

the ubiquity of relations and repetitions in man-made engineering512

objects. Note that in one part the sample points are almost non-513

existent and the method had little evidence to propagate and connect514

up the primitives.515

In the final, but most complicated example, we scanned a machine516

part (see Figure 14). Various relations were identified and con-517

formed to in the final model. The angle pair histogram clearly518

demonstrates the improvement in the pairwise angle relations.519

RANSAC failed to fit initial primitives, within fitting tolerance, for520

parts of the top of the model; we place a MLS surface fitted to the521

unclaimed point region for comparison (in slightly darker shade).522

Global relations for scan alignment. Multiple scans of an object523

are typically aligned using local refinement methods like point-to-524

point and point-to-plane iterative closest pair (ICP) algorithms. A525

commonly encountered problem in scan alignment is slippage, i.e.,526

in absence of appropriate local features, the scans slip over each527

other, instead of locking to a well defined configuration [Gelfand528

and Guibas 2004]. For example, in Figure 15, aligning source and529

target scans, S1 and S2, using ICP results in rotational slippage of530

the target. We use global relations to remove the ambiguity. First,531

for each individual scan we learn their global relations C
∗
1 and C

∗
2 ,532

respectively while conforming to the underlying scans. Then, in533

an outer loop we extract global relations on the combined data set534

S1 ∪ T (S2), while optimizing over the unknown transformation T535

that is restricted to the applicable slippage transforms, in this case,536

rotation about axis of S2. The algorithm alternates between learning537

relations, and solving for aligning transform T . In each iteration,538

we detect the top relation candidate c, use c to compute T that min-539
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Figure 15: Global relations can help register multiple scans, A

and B in this example, which are otherwise difficult to align sim-

ply using local registration. We first individually align each of the

scans using our framework to yield aligned models A and B. Locally

registering the aligned models using ICP leaves ambiguity due to

rotational slippage. We remove this ambiguity using global con-

straints, orthogonality between yellow-blue cylindrical hole pair in

this example, learned and optimized by our method.
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