

Tutorial

Symmetry in Shapes Theory and Practice

Niloy J. Mitra University College London

Overview

- Introduction
 - Motivation
 - Classification

- Methods
 - Extrinsic
 - Intrinsic

Applications

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Classification

Global vs. Partial

(a) complete symmetry group on parts of a shape

(c) partial rotational symmetry

Symmetry in Shapes: Theory and Practice

Classification

- Global vs. Partial
- Exact vs. Approximate

Symmetry in Shapes: Theory and Practice

Methods

Classification

- Global vs. Partial
- Exact vs. Approximate
- Intrinsic vs. Extrinsic

Symmetry in Shapes: Theory and Practice

Methods

Methods Gallery

Symmetry in Shapes: Theory and Practice

Methods

Global vs. Partial

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Global vs. Partial

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Global vs. Partial

Symmetry in Shapes: Theory and Practice

Methods

Extrinsic vs. Intrinsic

Extrinsic symmetries depend on the embedding of the object in space.

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Extrinsic vs. Intrinsic

Extrinsic symmetries depend on the embedding of the object in space.

Intrinsic symmetries are defined with respect to an intrinsic metric of the surface.

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

translations Bokeloh et al. 2011

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

translations Bokeloh et al. 2011

rotations reflections Martinet et al. 2006

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

translations Bokeloh et al. 2011

rotations reflections Martinet et al. 2006

similarity transforms Gal et al. 2006

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Intrinsic Symmetries

point-to-point correspondences Ovsjanikov et al. 2008

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Intrinsic Symmetries

point-to-point correspondences Ovsjanikov et al. 2008

partial intrinsic reflectional symmetries Xu et al. 2009

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Intrinsic Symmetries

point-to-point correspondences Ovsjanikov et al. 2008

partial intrinsic reflectional symmetries Xu et al. 2009 intrinsic regularities Mitra et al. 2009

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Gal et al. 2009

Berner et al. 2009

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

pairwise Kim et al. 2010

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

pairwise Kim et al. 2010

segmentation Mitra et al. 2006

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

pairwise Kim et al. 2010

segmentation Mitra et al. 2006

symmetry groups Pauly et al. 2008

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

pairwise Kim et al. 2010

symmetry groups Pauly et al. 2008

hierarchy Wang et al. 2011

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Thursday, 16 May 13

slippable regions Gelfand et al. 2004

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

docking sites Bokeloh et al. 2010

Physical Object

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Symmetry encodes Redundancy

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry encodes Redundancy

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry encodes Redundancy

Symmetry in Shapes: Theory and Practice

Methods

"100 Random Points"

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

"A 10x10 Regular Grid of Points"

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

"100 Random Points"

	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	Ì
		, I	nfc	٦rr	ทว	tic	n	\mathbf{C}	רר ^י	tont	I
				<u>л</u>						10111	
-	°	0	0	•	о •	°	0	о 0	。 。	°	
	0 0	。 。	0 0								
	0 0 0	0 0 0	0 0 0								

"A 10x10 Regular Grid of Points"

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Symmetry is absence of information

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Difficult

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Difficult

Which parts are symmetric —> objects are not pre-segmented

Difficult

- Which parts are symmetric —
 objects are not pre-segmented
- Space of transforms: rotation, translation, scaling, etc.

Difficult

- Which parts are symmetric —> objects are not pre-segmented
- Space of transforms: rotation, translation, scaling, etc.
- Brute force search is not feasible

Difficult

- Which parts are symmetric —> objects are not pre-segmented
- Space of transforms: rotation, translation, scaling, etc.
- Brute force search is not feasible

Easy

Difficult

- Which parts are symmetric —> objects are not pre-segmented
- Space of transforms: rotation, translation, scaling, etc.
- Brute force search is not feasible

Easy

Proposed symmetries — easy to validate

Symmetry in Shapes: Theory and Practice

Relation to Shape Matching

General setup

Global registration

Local registration (refinement)

Symmetry in Shapes: Theory and Practice

Symmetry Detection

M

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

 M_1

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

 M_1

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Matching with Translation

Symmetry in Shapes: Theory and Practice

Methods

Matching with Translation

$M_1 \approx T(M_2)$ T: translation

 M_2

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Matching with Rigid Transforms

Symmetry in Shapes: Theory and Practice

Matching with Rigid Transforms

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Partial Matching

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Partial Matching

 M_1

 M_2

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Local vs. Global Matching

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13
Local vs. Global Matching

global registration

any rigid transform

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Local vs. Global Matching

global registration

any rigid transform

5

local registration nearly aligned

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Local vs. Global Matching

global registration any rigid transform

local registration nearly aligned

Given M_1, \ldots, M_n , find T_2, \ldots, T_n such that $M_1 \approx T_2(M_2) \cdots \approx T_n(M_n)$

Symmetry in Shapes: Theory and Practice

 How many point-pairs are needed to *uniquely* define a rigid transform?

 How many point-pairs are needed to *uniquely* define a rigid transform?

> $\mathbf{p}_1
> ightarrow \mathbf{q}_1$ $\mathbf{p}_2
> ightarrow \mathbf{q}_2$ $\mathbf{p}_3
> ightarrow \mathbf{q}_3$

Symmetry in Shapes: Theory and Practice

Methods

 How many point-pairs are needed to *uniquely* define a rigid transform?

 $\mathbf{p}_1
ightarrow \mathbf{q}_1 \ \mathbf{p}_2
ightarrow \mathbf{q}_2 \ \mathbf{p}_3
ightarrow \mathbf{q}_3 \ R\mathbf{p}_i + t pprox \mathbf{q}_3$

Symmetry in Shapes: Theory and Practice

Methods

 How many point-pairs are needed to *uniquely* define a rigid transform?

Symmetry in Shapes: Theory and Practice

Methods

Pairwise Rigid Registration Goal

Align two partially-overlapping meshes, given initial guess for relative transform

[@Rusinkiewicz]

Symmetry in Shapes: Theory and Practice

Methods

Pairwise Rigid Registration Goal

Align two partially-overlapping meshes, given initial guess for relative transform

[@Rusinkiewicz]

Symmetry in Shapes: Theory and Practice

Methods

If correct correspondences are known, can find correct relative rotation/translation

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

How to find correspondences:

- User input?
- Feature detection?
- Signatures?

How to find correspondences:

User input? Feature detection? Signatures?

Symmetry in Shapes: Theory and Practice

Assume: Closest points as corresponding

$$\mathbf{p}_i
ightarrow \mathcal{C}(\mathbf{p}_i)$$

Symmetry in Shapes: Theory and Practice

Methods

... and iterate to find alignment

Iterative Closest Points (ICP) [Besl and McKay 92]

Converges if starting poses are *close enough*

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Select (e.g., 1000) random points

- Select (e.g., 1000) random points
- Match each to closest point on other scan, using data structure such as k-d tree

- Select (e.g., 1000) random points
- Match each to closest point on other scan, using data structure such as k-d tree
- Reject pairs with distance > k times median

- Select (e.g., 1000) random points
- Match each to closest point on other scan, using data structure such as k-d tree
- Reject pairs with distance > k times median
- Construct error function:

- Select (e.g., 1000) random points
- Match each to closest point on other scan, using data structure such as k-d tree
- Reject pairs with distance > k times median
- Construct error function:

- Select (e.g., 1000) random points
- Match each to closest point on other scan, using data structure such as k-d tree
- Reject pairs with distance > k times median
- Construct error function:

$$E := \sum (R\mathbf{p}_i + t - \mathbf{q}_i)^2$$

• Minimize (closed for $\stackrel{\imath}{m}$ solution in [Horn 87])

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

ICP Variants

Variants of basic ICP

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Reflection

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

- Reflection
- Rotation + translation

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

- Reflection
- Rotation + translation
- Uniform scaling

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Feature selection

$$\mathcal{F}(M) = \mathcal{F}(T(M))$$

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Feature selection

$$\mathcal{F}(M) = \mathcal{F}(T(M))$$

• Aggregation

Symmetry in Shapes: Theory and Practice

• Feature selection

$$\mathcal{F}(M) = \mathcal{F}(T(M))$$

• Aggregation

• Extraction

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

surface curvature Gal et al. 2006

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

surface curvature Gal et al. 2006 line features Bokeloh et al. 2009

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

generalized even moments Martinet et al. 2006

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

generalized even moments Martinet et al. 2006

shape diameter functions (SDF) Shapira et al. 2008

Symmetry in Shapes: Theory and Practice

Methods

Killing vector fields Ben-Chen et al. 2010 generalized even moments Martinet et al. 2006

shape diameter functions (SDF) Shapira et al. 2008

Symmetry in Shapes: Theory and Practice

Methods

global point signatures (GPS)

Rustamov 2007

Symmetry in Shapes: Theory and Practice

shape diameter functions (SDF) Shapira et al. 2008

Thursday, 16 May 13

[Gal et al. 2006]

Symmetry in Shapes: Theory and Practice

Methods

• Features: quadratic patch parameters

[Gal et al. 2006]

Symmetry in Shapes: Theory and Practice

• Features: quadratic patch parameters

[Gal et al. 2006]

Symmetry in Shapes: Theory and Practice

• Features: quadratic patch parameters

• Aggregation: geometric hashing

[Gal et al. 2006]

Symmetry in Shapes: Theory and Practice

• Features: quadratic patch parameters

• Aggregation: geometric hashing

[Gal et al. 2006]

Symmetry in Shapes: Theory and Practice

• Features: quadratic patch parameters

Aggregation: geometric hashing

• *Extraction:* pre-segmentation

[Gal et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

[Podolak et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features:

[Podolak et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features:

[Podolak et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features:

• Aggregation: FFT in transform domain

[Podolak et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features:

• Aggregation: FFT in transform domain

[Podolak et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features:

• Aggregation: FFT in transform domain

• Extraction: clustering, region growing

[Podolak et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

A computational representation that describes all planar symmetries of a shape

Symmetry in Shapes: Theory and Practice

Methods

A computational representation that describes all planar symmetries of a shape

Symmetry in Shapes: Theory and Practice

Methods

A computational representation that describes all planar symmetries of a shape

Perfect Symmetry

Symmetry = 1.0

Symmetry in Shapes: Theory and Practice

A computational representation that describes all planar symmetries of a shape

Symmetry = 0.3

Symmetry in Shapes: Theory and Practice

A computational representation that describes all planar symmetries of a shape

Symmetry = 0.2

Symmetry in Shapes: Theory and Practice

A computational representation that describes all planar symmetries of a shape

$$d(M,T) = \left\| \frac{M - T(M)}{2} \right\|$$

Symmetry = 0.2

Symmetry in Shapes: Theory and Practice

[Mitra et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: curvatures

[Mitra et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: curvatures

[Mitra et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: curvatures

• Aggregation: transform domain analysis

[Mitra et al. 2006]

Symmetry in Shapes: Theory and Practice

• Features: curvatures

• Aggregation: transform domain analysis

[Mitra et al. 2006]

Symmetry in Shapes: Theory and Practice

• Features: curvatures

• Aggregation: transform domain analysis

• *Extraction:* region growing

[Mitra et al. 2006]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Reflective Symmetry

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Reflective Symmetry

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

transformation space

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

transformation space

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

transformation space

Symmetry in Shapes: Theory and Practice

Methods

transformation space

Symmetry in Shapes: Theory and Practice

Methods

transformation space

Symmetry in Shapes: Theory and Practice

Methods

transformation space

Symmetry in Shapes: Theory and Practice

Methods

transformation space

Symmetry in Shapes: Theory and Practice

Methods

transformation space

Symmetry in Shapes: Theory and Practice

Methods

transformation space

Symmetry in Shapes: Theory and Practice

Methods

transformation space

Height of cluster — size of patch

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

transformation space

- Height of cluster \longrightarrow size of patch
- Spread of cluster —> level of approximation

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Pipeline

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Pipeline

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Pipeline

Symmetry in Shapes: Theory and Practice

Methods

Rigid Transformations

Symmetry in Shapes: Theory and Practice

Methods

Rigid Transformations

Symmetry in Shapes: Theory and Practice

Methods

Mean-Shift Clustering

Symmetry in Shapes: Theory and Practice

Methods

Detection Results: Dragon

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Detection Results: Dragon

detected symmetries

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Detection Results: Dragon

detected symmetries

correction field

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Insight: Global to Local Problem

(Euclidean) symmetry in spatial domain

cluster(s) in transform domain

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Symmetrization: Bunny

Contraction

Transformation Space

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

[Bokeloh et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: slippage analysis

[Bokeloh et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: slippage analysis

[Bokeloh et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: slippage analysis

• Aggregation: locally coherent line arrangements

[Bokeloh et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: slippage analysis

• Aggregation: locally coherent line arrangements

[Bokeloh et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• *Features:* slippage analysis

• Aggregation: locally coherent line arrangements

• *Extraction:* simultaneous refinement

[Bokeloh et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Algorithm Pipeline

Symmetry in Shapes: Theory and Practice

Methods

Symmetry Detection

Symmetry in Shapes: Theory and Practice

Methods

Line Features

Symmetry in Shapes: Theory and Practice

Methods

Symmetry Detection

Symmetry in Shapes: Theory and Practice

Methods
Symmetry Detection

Symmetry in Shapes: Theory and Practice

Methods

[Pauly et al. 2008]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

• Features: curvatures

[Pauly et al. 2008]

Symmetry in Shapes: Theory and Practice

• Features: curvatures

[Pauly et al. 2008]

Symmetry in Shapes: Theory and Practice

• Features: curvatures

• Aggregation: transform domain model extraction

[Pauly et al. 2008]

Symmetry in Shapes: Theory and Practice

• Features: curvatures

• Aggregation: transform domain model extraction

[Pauly et al. 2008]

Symmetry in Shapes: Theory and Practice

• Features: curvatures

• Aggregation: transform domain model extraction

• *Extraction:* simultaneous refinement

[Pauly et al. 2008]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Input Model

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Regular Structures

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Thursday, 16 May 13

Model Estimation

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Model Estimation

density plot of pair-wise transformations

Symmetry in Shapes: Theory and Practice

Methods

Model Estimation

density plot of pair-wise transformations

Symmetry in Shapes: Theory and Practice

Methods
Optimization in Transform Domain

Symmetry in Shapes: Theory and Practice

Optimization in Transform Domain

Symmetry in Shapes: Theory and Practice

Methods

Structure Discovery

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Structure Discovery

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Structure Discovery

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Chambord Castle

Symmetry in Shapes: Theory and Practice

Methods

Chambord Castle

Symmetry in Shapes: Theory and Practice

Methods

Chambord Castle

Symmetry in Shapes: Theory and Practice

Methods

[Lipman et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

[Lipman et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

[Lipman et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

[Lipman et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

[Lipman et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

[Lipman et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

finding cliques amounts to spectral analysis on similarity matrix

[Lipman et al. 2009]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Symmetry-factored Segmentation

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

Symmetry in Shapes: Theory and Practice

Methods

finding cliques amounts to spectral analysis on similarity matrix

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13

Multi-scale Symmetry Detection

[Xu et al. 2012]

Symmetry in Shapes: Theory and Practice

Thursday, 16 May 13