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Kazhdan et al. 2003

Mitra et al. 2006

Bokeloh et al. 2009
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Extrinsic	
  vs.	
  Intrinsic

Extrinsic symmetries depend on the 
embedding of the object in space.

Intrinsic symmetries are defined with respect 
to an intrinsic metric of the surface.
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Extrinsic	
  Symmetries

similarity transforms
Gal et al. 2006

translations
Bokeloh et al. 2011

reflectionsrotations
Martinet et al. 2006
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Intrinsic	
  Symmetries

partial intrinsic 
reflectional symmetries

Xu et al. 2009

point-to-point 
correspondences

Ovsjanikov et al. 2008

intrinsic regularities
Mitra et al. 2009
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Discrete	
  vs.	
  Con-nuous

Podalak et al. 2006

Lipman et al. 2010

Gal et al. 2009

Berner et al. 2009

Gelfand et al. 2004

Ben-Chen et al. 2010
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Output	
  Structure

symmetry groups
Pauly et al. 2008

segmentation
Mitra et al. 2006

pairwise
Kim et al. 2010
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Output	
  Structure

symmetry groups
Pauly et al. 2008

hierarchy
Wang et al. 2011

segmentation
Mitra et al. 2006

pairwise
Kim et al. 2010
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  Structure

symmetry orbits
Lipman et al. 2010

slippable regions
Gelfand et al. 2004
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Output	
  Structure

symmetry orbits
Lipman et al. 2010

docking sites
Bokeloh et al. 2010

slippable regions
Gelfand et al. 2004
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Symmetry	
  and	
  Informa-on

“100 Random Points” “A 10x10 Regular Grid of Points”

High Information Content Low Information Content

Symmetry is absence of information
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Difficult
– Which parts are symmetric  

objects are not pre-segmented
– Space of transforms: rotation, translation, scaling, etc.
– Brute force search is not feasible

Easy
– Proposed symmetries          easy to validate

Problem	
  Characteris-cs
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Rela-on	
  to	
  Shape	
  Matching

• General setup

• Global registration

• Local registration (refinement)
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Geometric	
  Matching
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M ⇡ T (M)symmetry detection

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Geometric	
  Matching

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Geometric	
  Matching

M1

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Geometric	
  Matching

M1 M2

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

M1 ⇡ T (M2)

Geometric	
  Matching

M1 M2

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice
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Matching	
  with	
  Transla-on

M1 M2

M1 ⇡ T (M2)
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  with	
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M1 M2

M1 ⇡ T (M2)
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M1 ⇡ T2(M2) · · · ⇡ Tn(Mn)

Given M1, . . . ,Mn, find T2, . . . , Tn such that

Local	
  vs.	
  Global	
  Matching

global registration
any rigid transform

local registration
nearly aligned
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define a rigid transform?

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

p1 ! q1

p2 ! q2

p3 ! q3

ICP:	
  Local,	
  par-al,	
  rigid	
  transforms
• How many point-pairs are needed to uniquely 

define a rigid transform?

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

p1 ! q1

p2 ! q2

p3 ! q3

Rpi + t ⇡ qi
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  Local,	
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  rigid	
  transforms
• How many point-pairs are needed to uniquely 

define a rigid transform?
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p1 ! q1

p2 ! q2

p3 ! q3

Rpi + t ⇡ qi

ICP:	
  Local,	
  par-al,	
  rigid	
  transforms
• How many point-pairs are needed to uniquely 

define a rigid transform?

pi ! qj
Correspondence 

problem:
?

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Pairwise Rigid Registration Goal
Align two partially-overlapping meshes, 
given initial guess for relative transform

[@Rusinkiewicz]
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Pairwise Rigid Registration Goal
Align two partially-overlapping meshes, 
given initial guess for relative transform

[@Rusinkiewicz]
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If correct correspondences are known, 
can !nd correct relative rotation/translation

Aligning	
  3D	
  Data
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User input?
Feature detection?  
Signatures?
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Aligning	
  3D	
  Data
How to find correspondences:  

User input?
Feature detection?  
Signatures?
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pi ! C(pi)

Aligning	
  3D	
  Data

Assume: Closest points as corresponding
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... and iterate to !nd alignment

Iterative Closest Points (ICP) 
[Besl and McKay 92]

Converges if starting poses are close enough

Aligning	
  3D	
  Data
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Basic	
  ICP
• Select (e.g., 1000) random points

• Match each to closest point on other scan,
using data structure such as k-d tree

• Reject pairs with distance > k times median

• Construct error function: 

• Minimize (closed form solution in [Horn 87])

E :=
X

i

(Rpi + t� qi)
2
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ICP	
  Variants

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

Variants of basic ICP
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Types	
  of	
  Symmetry

• Reflection
• Rotation + translation
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Types	
  of	
  Symmetry

• Reflection
• Rotation + translation
• Uniform scaling
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Typical	
  Stages	
  

•  Feature selection

•  Aggregation

•  Extraction

F(M) = F(T (M))
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Gal et al. 2006
surface curvature
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Type	
  of	
  Features

line features
Bokeloh et al. 2009Gal et al. 2006

surface curvature
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Type	
  of	
  Features

line features
Bokeloh et al. 2009Gal et al. 2006

surface curvature geodesic distances
Kim et al. 2010
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Type	
  of	
  Features

generalized even moments
Martinet et al. 2006

shape diameter functions (SDF)
Shapira et al. 2008

Killing vector fields
Ben-Chen et al. 2010

global point signatures (GPS)
Rustamov 2007
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[Gal et al. 2006]
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Geometric	
  Hashing

• Features: quadratic patch parameters

• Aggregation: geometric hashing

[Gal et al. 2006]
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Geometric	
  Hashing

• Features: quadratic patch parameters

• Aggregation: geometric hashing

[Gal et al. 2006]

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Geometric	
  Hashing

• Features: quadratic patch parameters

• Aggregation: geometric hashing

• Extraction: pre-segmentation

[Gal et al. 2006]
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  Transform

[Podolak et al. 2006]
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Symmetry	
  Transform

• Features:

• Aggregation: FFT in transform domain

[Podolak et al. 2006]
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Symmetry	
  Transform

• Features:

• Aggregation: FFT in transform domain

[Podolak et al. 2006]
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Symmetry	
  Transform

• Features:

• Aggregation: FFT in transform domain

• Extraction: clustering, region growing

[Podolak et al. 2006]
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A computational representation that describes all 
planar symmetries of a shape

?
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Symmetry	
  Transform

A computational representation that describes
all planar symmetries of a shape

?
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Symmetry	
  Transform

A computational representation that describes
all planar symmetries of a shape

?
Symmetry = 1.0Perfect Symmetry
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Symmetry	
  Transform

A computational representation that describes
all planar symmetries of a shape

?
Symmetry = 0.3Local Symmetry
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Symmetry	
  Transform

A computational representation that describes
all planar symmetries of a shape

?
Symmetry = 0.2Partial Symmetry
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Symmetry	
  Transform

A computational representation that describes
all planar symmetries of a shape

?
Symmetry = 0.2

d(M,T ) =

����
M � T (M)

2

����
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Transform	
  Domain	
  Analysis

[Mitra et al. 2006]
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Transform	
  Domain	
  Analysis

• Features: curvatures

• Aggregation: transform domain analysis

[Mitra et al. 2006]
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Transform	
  Domain	
  Analysis

• Features: curvatures

• Aggregation: transform domain analysis

• Extraction: region growing

[Mitra et al. 2006]

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  A	
  Pair	
  Votes

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  A	
  Pair	
  Votes

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  A	
  Pair	
  Votes

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  A	
  Pair	
  Votes

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  A	
  Pair	
  Votes

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  A	
  Pair	
  Votes

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  Vo-ng	
  Con-nues

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  Vo-ng	
  Con-nues

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  Vo-ng	
  Con-nues

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  Vo-ng	
  Con-nues

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  Largest	
  Cluster

Thursday, 16 May 13



MethodsSymmetry in Shapes: Theory and Practice

Reflec-ve	
  Symmetry:	
  Largest	
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• Height of cluster          size of patch

Reflec-ve	
  Symmetry:	
  Largest	
  Cluster
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• Height of cluster          size of patch

• Spread of cluster          level of approximation

Reflec-ve	
  Symmetry:	
  Largest	
  Cluster
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  Transforma-ons
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Rigid	
  Transforma-ons
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Mean-­‐ShiR	
  Clustering
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Detec-on	
  Results:	
  Dragon
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detected symmetries

Detec-on	
  Results:	
  Dragon
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3 Approach

Our goal is to detect and quantify symmetries in a point set X =

{x
i

}n

i=1 ⇢ R
d. A symmetry is a group of transformations G =

{g} that act on X and leave it intact. For example, the set of points
shown below, sampled from an equilateral triangle, can be rotated
by 120

�, 240

� around its center, and we get the same set of points
after the rotation (if we forget about the labeling of the points).
Likewise, the point set is preserved if we reflect these points with
respect to any line connecting the center and one of the corners of
the triangle. Therefore the symmetry group of this point set is the
dihedral group. Often symmetry groups G are subgroups of rigid
transformation in the Euclidean two or three dimensional space,
but they need not be restricted to only this case; for example, self
isometries of a surface are also symmetries.

A basic observation of this paper is that it is useful to think about
symmetry in the correspondence space. We start with describing
the perfect symmetric case, that is, a case similar to the triangle,
in which every symmetry transformation leaves the points X in-
tact (gX = X ), and we address the case of imperfect/approximate
symmetry afterwards.

Perfect symmetry The symmetry correspondence graph is a
graph whose vertices are the points in X , with undirected edges
(x

i

, x
j

) between points in the same orbit. Two points are in the
same orbit if there exists a symmetry transformation which takes
x

i

to x
j

. It is easy to check that since symmetry transformations
of a shape form a group, the relation “x

i

, x
j

are in the same orbit”
is an equivalence relation. This means that the symmetry corre-
spondence graph has a very specific structure: the number of its
connected components equals the number of orbits, and each such
connected component is a clique. The symmetry correspondence
graph can be described by an adjacency matrix C 2 Rn⇥n, which
is generally sparse (at least for discrete symmetries). If we rear-
range the rows and columns of this matrix according to the orbits,
then C is a block-diagonal matrix in which each block consists of
only ones, and zeros appear everywhere outside the blocks. The
figure above shows this matrix for the triangle point set (red is one
and blue zero).
The spectral properties of the symmetry correspondence matrix C
contain a lot of information about the symmetry of the shape and
will play an important role in extracting data from the symmetry
correspondence matrix, especially in the imperfect case. As proved
in the Appendix, the number of non-zero eigenvalues equals the
number of orbits, the magnitude of each eigenvalue is the size of
that orbit, and there exists an eigenvector corresponding to each
eigenvalue that is constant on the corresponding orbit and zero ev-
erywhere else. These eigenvectors are shown for the triangle exam-
ple above: the image second from the right in the top row shows
the eigenvalue histogram of the symmetry correspondence matrix,
and the bottom row visualizes the three nonzero eigenvectors. Each
eigenvector is shown twice: once as a polar plot, and once color
coded on the point set X . Note that the white points are exactly the
orbits.
Further note that these eigenvectors can be thought of as functions

defined over the point set X , that is f : X ! R; we will therefore
also refer to them as eigenfunctions. The linear space spanned by
these non-zero vectors is the space of functions that are invariant to
the shape’s symmetry: every combination of these vectors is con-
stant on the orbits, and points in X get transformed by symmetries
only inside their orbit, and, vice versa, every symmetry-invariant
function is constant on orbits. This means that the non-zero spec-
trum of the symmetry correspondence matrix encapsulates all the
information about the orbits of the symmetry, regardless of its spe-
cific type (e.g., cyclic, dihedral, etc.). Importantly, it is separated
from the “rest” of the eigenvectors by a spectral gap related to the
size of the orbit. This is even more apparent after a normalization
such that the rows of the symmetry correspondence matrix sum to
one – then, the nonzero eigenvalues are all ones, as shown in the
histogram of eigenvalues on the top right of the figure above.

Our plan is to use the top eigenvectors multiplied with their eigen-
values to define an embedding of the point set in a higher dimen-
sional space where Euclidean distance in that space “factors out
symmetry”. Since in the perfect case, only the eigenvectors cor-
responding to nonzero eigenvalues are constant on orbits and they
span the space of functions constant on orbits, this procedure will
lead to an embedding where the Euclidean distance is zero between
points in the same orbit and nonzero between points in different or-
bits. We will name this embedding the Symmetry Factored Embed-
ding (SFE) and the corresponding Euclidean distance in that space
the Symmetry Factored Distance (SFD).
Approximate symmetry “Real life” data is seldom perfectly
symmetric, due to sampling, noise, warps, partial symmetry, etc.
In this case, we use a continuous estimation of symmetry between
points in the data X to build a fuzzy version of the symmetry cor-
respondence matrix (i.e., with continuous values [0, 1]) and then
use its spectral properties to construct the Symmetry Factored Em-
bedding and Distance. Intuitively, our continuous estimation of
symmetry between points is a relaxation of the above described
binary relation “being in the same orbit”. There are two justifica-
tions for using the SFE and SFD to detect approximate symmetries.
First, since there exists a spectral gap separating the symmetry-
aware eigenfunctions from the non-symmetry-related eigenfunc-
tions, even when the symmetry correspondence matrix has missing
entries or is contaminated with noise, the top eigenfunctions are sta-
ble. This is demonstrated in the image below, where we see three
sets of points, sampled from a perfect equilateral triangle, with dif-
ferent noise levels. To the right of the point set we show in each
case the fuzzy correspondence matrix as computed using our (ran-
domized) algorithm. Note that to bring out the block structure, the
rows and columns are rearranged - for visualization purposes only,
since we obviously do not know this ordering, which determines the
orbits, in the general case. As the shape becomes more noisy and
deviates from perfect symmetry, the symmetry correspondence ma-
trix gradually loses its block structure. Nevertheless, the top three
eigenfunctions are still distinct from all the rest (see the eigenvalue
histogram on the bottom row); we show the second most dominant
eigenfunction in polar coordinates, and it is clear that it is stable as
well under the deviation from perfect symmetry.
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�, 240

� around its center, and we get the same set of points
after the rotation (if we forget about the labeling of the points).
Likewise, the point set is preserved if we reflect these points with
respect to any line connecting the center and one of the corners of
the triangle. Therefore the symmetry group of this point set is the
dihedral group. Often symmetry groups G are subgroups of rigid
transformation in the Euclidean two or three dimensional space,
but they need not be restricted to only this case; for example, self
isometries of a surface are also symmetries.

A basic observation of this paper is that it is useful to think about
symmetry in the correspondence space. We start with describing
the perfect symmetric case, that is, a case similar to the triangle,
in which every symmetry transformation leaves the points X in-
tact (gX = X ), and we address the case of imperfect/approximate
symmetry afterwards.

Perfect symmetry The symmetry correspondence graph is a
graph whose vertices are the points in X , with undirected edges
(x

i

, x
j

) between points in the same orbit. Two points are in the
same orbit if there exists a symmetry transformation which takes
x

i

to x
j

. It is easy to check that since symmetry transformations
of a shape form a group, the relation “x

i

, x
j

are in the same orbit”
is an equivalence relation. This means that the symmetry corre-
spondence graph has a very specific structure: the number of its
connected components equals the number of orbits, and each such
connected component is a clique. The symmetry correspondence
graph can be described by an adjacency matrix C 2 Rn⇥n, which
is generally sparse (at least for discrete symmetries). If we rear-
range the rows and columns of this matrix according to the orbits,
then C is a block-diagonal matrix in which each block consists of
only ones, and zeros appear everywhere outside the blocks. The
figure above shows this matrix for the triangle point set (red is one
and blue zero).
The spectral properties of the symmetry correspondence matrix C
contain a lot of information about the symmetry of the shape and
will play an important role in extracting data from the symmetry
correspondence matrix, especially in the imperfect case. As proved
in the Appendix, the number of non-zero eigenvalues equals the
number of orbits, the magnitude of each eigenvalue is the size of
that orbit, and there exists an eigenvector corresponding to each
eigenvalue that is constant on the corresponding orbit and zero ev-
erywhere else. These eigenvectors are shown for the triangle exam-
ple above: the image second from the right in the top row shows
the eigenvalue histogram of the symmetry correspondence matrix,
and the bottom row visualizes the three nonzero eigenvectors. Each
eigenvector is shown twice: once as a polar plot, and once color
coded on the point set X . Note that the white points are exactly the
orbits.
Further note that these eigenvectors can be thought of as functions

defined over the point set X , that is f : X ! R; we will therefore
also refer to them as eigenfunctions. The linear space spanned by
these non-zero vectors is the space of functions that are invariant to
the shape’s symmetry: every combination of these vectors is con-
stant on the orbits, and points in X get transformed by symmetries
only inside their orbit, and, vice versa, every symmetry-invariant
function is constant on orbits. This means that the non-zero spec-
trum of the symmetry correspondence matrix encapsulates all the
information about the orbits of the symmetry, regardless of its spe-
cific type (e.g., cyclic, dihedral, etc.). Importantly, it is separated
from the “rest” of the eigenvectors by a spectral gap related to the
size of the orbit. This is even more apparent after a normalization
such that the rows of the symmetry correspondence matrix sum to
one – then, the nonzero eigenvalues are all ones, as shown in the
histogram of eigenvalues on the top right of the figure above.

Our plan is to use the top eigenvectors multiplied with their eigen-
values to define an embedding of the point set in a higher dimen-
sional space where Euclidean distance in that space “factors out
symmetry”. Since in the perfect case, only the eigenvectors cor-
responding to nonzero eigenvalues are constant on orbits and they
span the space of functions constant on orbits, this procedure will
lead to an embedding where the Euclidean distance is zero between
points in the same orbit and nonzero between points in different or-
bits. We will name this embedding the Symmetry Factored Embed-
ding (SFE) and the corresponding Euclidean distance in that space
the Symmetry Factored Distance (SFD).
Approximate symmetry “Real life” data is seldom perfectly
symmetric, due to sampling, noise, warps, partial symmetry, etc.
In this case, we use a continuous estimation of symmetry between
points in the data X to build a fuzzy version of the symmetry cor-
respondence matrix (i.e., with continuous values [0, 1]) and then
use its spectral properties to construct the Symmetry Factored Em-
bedding and Distance. Intuitively, our continuous estimation of
symmetry between points is a relaxation of the above described
binary relation “being in the same orbit”. There are two justifica-
tions for using the SFE and SFD to detect approximate symmetries.
First, since there exists a spectral gap separating the symmetry-
aware eigenfunctions from the non-symmetry-related eigenfunc-
tions, even when the symmetry correspondence matrix has missing
entries or is contaminated with noise, the top eigenfunctions are sta-
ble. This is demonstrated in the image below, where we see three
sets of points, sampled from a perfect equilateral triangle, with dif-
ferent noise levels. To the right of the point set we show in each
case the fuzzy correspondence matrix as computed using our (ran-
domized) algorithm. Note that to bring out the block structure, the
rows and columns are rearranged - for visualization purposes only,
since we obviously do not know this ordering, which determines the
orbits, in the general case. As the shape becomes more noisy and
deviates from perfect symmetry, the symmetry correspondence ma-
trix gradually loses its block structure. Nevertheless, the top three
eigenfunctions are still distinct from all the rest (see the eigenvalue
histogram on the bottom row); we show the second most dominant
eigenfunction in polar coordinates, and it is clear that it is stable as
well under the deviation from perfect symmetry.
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ij

(left) to the
SFD (right).

Figure 11: Symmetry-aware segmentation. We use the SFE with
the basic k-means algorithm.

k/n on average, since there are k (on average) repeating appear-
ances of the first point in the first pair, and the probability of getting
the second point right assuming the first is right is proportional to
1/
p

n on average (due to the requirement that the distance between
the pairs is approximately equal). The overall complexity of ap-
proximating S

ij

is then O(n2pn log n), where the constant can be
bounded independently of the symmetry group type, or even better,
depends on the reciprocal of the minimal average orbit size of the
generating set’s subgroups. So the higher the symmetry - the better.

As to practical running times, we mostly ran our algorithm cn
p

n
iterations based on the analysis above, where c = 1� 3. The table
below lists observed running times for some of the examples in the
paper.

Model pnts time Model pnts time
Cube 386 29s Julius 1000 231s

Bridge 1000 258s Flower 1000 290s
Chair 1000 358s Dragon 1000 850s
Street 1000 441s Horse 1000 920s

Jewelery 1200 893s Mech.1 1200 750s
Cars 1200 675s Mech.2 1500 852s

Cryo EM 2194 1774s Virus 2000 1052s

Figure 12: Detecting symmetry in Polio-virus through clustering
Cryo-EM data in Symmetry Factored Embedding space.

For the spectral analysis of the matrix C it is enough to take the
first few eigenvectors due to the spectral gap. Since the matrix C
is usually sparse (orbit sizes are finite and much smaller than n)
the eigen-analysis of the matrix C can be done in time O(n1.5

)

in number of samples. Except for the non-rigid case, we have not
exploited this property, since calculating the first 100 eigenvectors
in 1000⇥ 1000 matrix takes around 5 seconds in Matlab, which is
negligible in comparison to the time complexity of approximating
S.

7 Applications

In this section, we explore two shape analysis applications of the
methods presented in Section 4: symmetry-aware segmentation of
point sets and approximating the locus of stationary points.

Symmetry-aware segmentation Symmetry is an important cue
for segmentation of shapes into functional parts. It has been used
previously by [Podolak et al. 2006] to decompose meshes. How-
ever, their method focused specifically on planar reflective symme-
tries and would not extend well to handle arbitrary symmetries.

In this section, we investigate the idea of using the SFD to fa-
cilitate symmetric segmentation of meshes. The main obser-
vation is that the distances between points in symmetric orbits
are reduced in the Symmetry Factored Embedding space (zero
in the case of perfect symmetry), and so clustering points in
that space should produce decompositions with symmetric points
in the same cluster. To experiment with this idea, we exe-
cute a standard k-means clustering algorithm on points in the
embedded space ⇧(X ) = {⇧(x

i

)}n

i=1 and then decompose
the input based on the resulting clusters (we smooth the in-
dex function to get slightly smoother boundaries of clusters).

The inset figure shows a simple example for a
2D point set with k = 2 (two clusters). Note
the different symmetry groups of each cluster.
More complex 3D examples are shown in Fig-
ure 11. There are cases with partial symmetry
(bridge, flower, mechanical part in top row)
and complex symmetry (jewelry, mechanical
part in middle row). Figure 12 shows the re-
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the perfect symmetric case, that is, a case similar to the triangle,
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tact (gX = X ), and we address the case of imperfect/approximate
symmetry afterwards.

Perfect symmetry The symmetry correspondence graph is a
graph whose vertices are the points in X , with undirected edges
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same orbit if there exists a symmetry transformation which takes
x

i

to x
j

. It is easy to check that since symmetry transformations
of a shape form a group, the relation “x

i

, x
j

are in the same orbit”
is an equivalence relation. This means that the symmetry corre-
spondence graph has a very specific structure: the number of its
connected components equals the number of orbits, and each such
connected component is a clique. The symmetry correspondence
graph can be described by an adjacency matrix C 2 Rn⇥n, which
is generally sparse (at least for discrete symmetries). If we rear-
range the rows and columns of this matrix according to the orbits,
then C is a block-diagonal matrix in which each block consists of
only ones, and zeros appear everywhere outside the blocks. The
figure above shows this matrix for the triangle point set (red is one
and blue zero).
The spectral properties of the symmetry correspondence matrix C
contain a lot of information about the symmetry of the shape and
will play an important role in extracting data from the symmetry
correspondence matrix, especially in the imperfect case. As proved
in the Appendix, the number of non-zero eigenvalues equals the
number of orbits, the magnitude of each eigenvalue is the size of
that orbit, and there exists an eigenvector corresponding to each
eigenvalue that is constant on the corresponding orbit and zero ev-
erywhere else. These eigenvectors are shown for the triangle exam-
ple above: the image second from the right in the top row shows
the eigenvalue histogram of the symmetry correspondence matrix,
and the bottom row visualizes the three nonzero eigenvectors. Each
eigenvector is shown twice: once as a polar plot, and once color
coded on the point set X . Note that the white points are exactly the
orbits.
Further note that these eigenvectors can be thought of as functions

defined over the point set X , that is f : X ! R; we will therefore
also refer to them as eigenfunctions. The linear space spanned by
these non-zero vectors is the space of functions that are invariant to
the shape’s symmetry: every combination of these vectors is con-
stant on the orbits, and points in X get transformed by symmetries
only inside their orbit, and, vice versa, every symmetry-invariant
function is constant on orbits. This means that the non-zero spec-
trum of the symmetry correspondence matrix encapsulates all the
information about the orbits of the symmetry, regardless of its spe-
cific type (e.g., cyclic, dihedral, etc.). Importantly, it is separated
from the “rest” of the eigenvectors by a spectral gap related to the
size of the orbit. This is even more apparent after a normalization
such that the rows of the symmetry correspondence matrix sum to
one – then, the nonzero eigenvalues are all ones, as shown in the
histogram of eigenvalues on the top right of the figure above.

Our plan is to use the top eigenvectors multiplied with their eigen-
values to define an embedding of the point set in a higher dimen-
sional space where Euclidean distance in that space “factors out
symmetry”. Since in the perfect case, only the eigenvectors cor-
responding to nonzero eigenvalues are constant on orbits and they
span the space of functions constant on orbits, this procedure will
lead to an embedding where the Euclidean distance is zero between
points in the same orbit and nonzero between points in different or-
bits. We will name this embedding the Symmetry Factored Embed-
ding (SFE) and the corresponding Euclidean distance in that space
the Symmetry Factored Distance (SFD).
Approximate symmetry “Real life” data is seldom perfectly
symmetric, due to sampling, noise, warps, partial symmetry, etc.
In this case, we use a continuous estimation of symmetry between
points in the data X to build a fuzzy version of the symmetry cor-
respondence matrix (i.e., with continuous values [0, 1]) and then
use its spectral properties to construct the Symmetry Factored Em-
bedding and Distance. Intuitively, our continuous estimation of
symmetry between points is a relaxation of the above described
binary relation “being in the same orbit”. There are two justifica-
tions for using the SFE and SFD to detect approximate symmetries.
First, since there exists a spectral gap separating the symmetry-
aware eigenfunctions from the non-symmetry-related eigenfunc-
tions, even when the symmetry correspondence matrix has missing
entries or is contaminated with noise, the top eigenfunctions are sta-
ble. This is demonstrated in the image below, where we see three
sets of points, sampled from a perfect equilateral triangle, with dif-
ferent noise levels. To the right of the point set we show in each
case the fuzzy correspondence matrix as computed using our (ran-
domized) algorithm. Note that to bring out the block structure, the
rows and columns are rearranged - for visualization purposes only,
since we obviously do not know this ordering, which determines the
orbits, in the general case. As the shape becomes more noisy and
deviates from perfect symmetry, the symmetry correspondence ma-
trix gradually loses its block structure. Nevertheless, the top three
eigenfunctions are still distinct from all the rest (see the eigenvalue
histogram on the bottom row); we show the second most dominant
eigenfunction in polar coordinates, and it is clear that it is stable as
well under the deviation from perfect symmetry.
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