

Universität des Saarlandes FR 6.2 Informatik

Dr. Ernst Althaus, Dr. Benjamin Doerr, David Steurer

SS 2005

Exercises for Optimization

1. Assignment

Due 29.04.2005

Exercise 1 $(9 \times 1 + 2 Points)$

Let $A = (a_1, \ldots, a_n)$ be a non-singular $n \times n$ real matrix with columns a_i and let adj(A) denote the $n \times n$ matrix with $\operatorname{adj}(A)_{ji} = (-1)^{i+j} \operatorname{det}(m_{ij}(A))$ where $m_{ij}(A)$ is the $(n-1) \times (n-1)$ submatrix obtained by deleting row i and column j from A. The matrix adj(A) is called adjugate ("Adjungierte") of A.

- a) Give the definition of linear independence.
- b) State "the" two formulae for computing the determinant of a matrix.
- c) Which of the following statements are true for all $A, B \in \mathbb{R}^{n \times n}$? (without proof)
 - (a) det $A = 0 \Leftrightarrow$ columns (rows) of A are linearly dependent
 - (b) $\det(A+B) = \det A + \det B$
 - (c) $\det(A \cdot B) = \det A \cdot \det B$
- d) Show $|\det A| \le n! ||A||_{\infty}^n$. ($||\cdot||_{\infty}$ denotes the maximum absolute value in a matrix or vector.)

e) Let
$$b \in \mathbb{R}^n$$
. Show that $\operatorname{adj}(A) \cdot b = \begin{pmatrix} \operatorname{det}(m_1(A, b)) \\ \vdots \\ \operatorname{det}(m_n(A, b)) \end{pmatrix}$ where $m_i(A, b)$ is obtained from A by replacing column i by vector b

replacing column i by vector b.

- f) Show $\operatorname{adj}(A) \cdot A = I \cdot \det A$ where $I \in \mathbb{R}^{n \times n}$ is the identity matrix.
- g) State and prove Cramer's Rule. (*Hint.* Deduce $\frac{1}{\det A}A \cdot \operatorname{adj}(A) = I$ from f).)
- h) Suppose A is an integer matrix. Show A^{-1} is an integer matrix if and only if $|\det A| = 1$. (*Remark.* A is called *unimodular* if $A, A^{-1} \in \mathbb{Z}^{n \times n}$.)
- i) Suppose A and b have integer entries. Let x be such that Ax = b. Show that each x_i is rational. Let $x_i = p_i/q_i$ for integers p_i, q_i with $gcd(p_i, q_i) = 1$. Give upper bounds for $|p_i|$ and $|q_i|$ in terms of $n, ||A||_{\infty}$ and $||b||_{\infty}$.

(*Remark.* This shows that the *representation size* of x is polynomial in the representation size of A and b.)

j) Show that for any matrix $A \in \mathbb{R}^{n \times m}$ there is a matrix Y such that

$$\{Ax \mid x \in R^m\} = \{b \in \mathbb{R}^n \mid Y^T b = 0\}.$$

Can you find a geometric interpretation? (*Hint*. This is not related to Cramer's Rule.)

Exercise 2 $(4 \times 1 \text{ Points})$

For the following exercises only use that the dual of a linear program of the form

(P) : maximize $c^T x$ subject to $Ax \leq b, x \geq 0$

is the linear program

(D) : minimze $y^T b$ subject to $y^T A \ge c^T, y \ge 0$.

- a) Let x and y be feasible solutions to (P) and (D), respectively. Prove algebraically that $c^T x$ is at most $y^T b$. (*Remark.* This fact is called *weak duality*.)
- b) Transform the problem (D) to an equivalent problem (D') of the same form than (P).
- c) Determine the dual of (D'). Call this problem (P').
- d) What is the relation between (P) and (P')?

Exercise 3 (1+1+2+1 Points)Consider the linear problem

(P): maximize $cx_1 + dx_2$ subject to $x_1 \le 1, x_2 \le 1, x_1 + x_2 \le 1$

- a) Graph the feasible region.
- b) Determine the dual problem (D) of (P). (*Hint.* $\min_{y^T A = c^T, y \ge 0} y^T b$ is dual to $\max_{Ax \le b} c^T x$.)
- c) For each c, d show whether (P)
 - (a) is infeasible,
 - (b) is unbounded,
 - (c) has exactly one optimum solution or
 - (d) has more than one optimum solution.

In case of c) or d), compute an optimum solution and prove optimality using the dual.

d) Consider optimum solutions x and y for (P) and (D), respectively. Can you observe a connection between the positive entries of y and the constraints in (P) that are fulfilled with equality by x? What happens to (D) if (P) is unbounded?