

Universität des
Saarlandes
FR 6.2 Informatik

Dr. Ernst Althaus, Dr. Benjamin Doerr, David Steurer
SS 2005

Exercises for Optimization

2. Assignment

Due 6.05.2005

Exercise 1 (5 Points)

Consider the classic diet problem: Various foods are available, each unit of which contributes a certain amount toward the minimum daily requirements of various nutritional needs. Each food has a particular cost. The goal is to choose how many units of each food to purchase to meet the minimum daily nutritional requirements, while minimizing the total cost. Formulate this as a linear program, state the dual problem and give an "economic interpretation" of the dual.

Exercise $2(2+3$ Points $)$
a) Show that for each linear program of the form

$$
\text { maximize } c^{T} x \text { subject to } A x \leq b
$$

there is an equivalent linear program of the form

$$
\text { maximize } c^{\prime T} x^{\prime} \text { subject to } A^{\prime} x^{\prime}=b^{\prime}, x^{\prime} \geq 0
$$

b) Show that the following two problems are polynomial-time equivalent.

- Given a linear program, find a feasible solution or decide that there is none.
- Given a linear program, find an optimal solution or decide that there is none.

Exercise 3 (3+2 Points)

a) Derive and prove a Theorem of the Alternatives for the system

$$
A x=b, x \geq 0
$$

b) Let $S=\left\{a_{1}, \ldots, a_{k}\right\} \subset \mathbb{R}^{n}$ and let

$$
\operatorname{conv}(S):=\left\{\sum_{i=1}^{k} \lambda_{i} a_{i} \mid \lambda_{i} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\} \subset \mathbb{R}^{n}
$$

denote the convex hull of S.
Show that for each $b \in \mathbb{R}^{n}$ either b is contained in $\operatorname{conv}(S)$ or there exists a closed half-space $H \subset \mathbb{R}^{n}$ with $\operatorname{conv}(S) \subseteq H$ and $b \notin H$.

Exercise $4\left(3+2+2^{*}+2^{*}\right.$ Points $)$

Note that you earn bonus points for 4.c) and 4.d).
a) Prove or disprove that the following sets are (finite) intersections of halfspaces.
(a) $\left\{x \in \mathbb{R}^{n}| | x_{i} \mid \leq 1\right\}$
(b) $\left\{x \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid \leq 1\right\}$
(c) $\left\{x \in \mathbb{R}^{n} \mid x_{1}>0\right\}$
b) Consider the piecewise linear function $f(x)=\min _{j} f^{(j)}(x)$ for affine linear functions $f^{(j)}(x)=$ $d^{(j)}+\sum_{i} c_{i}^{(j)} x_{i}$. Reduce the following problem to an equivalent linear programming problem.

$$
\text { maximize } f(x) \text { subject to } A x \leq b
$$

c) Let $H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq \beta\right\}$ be a half-space and $P=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\beta\right\}$ the corresponding hyperplane. Define $d_{P}(x):=\min _{y \in P}\|x-y\|_{2}$.
Show that $d_{P}(x)$ is a affine linear function if x ranges over H.
(Hint. Write $x=\frac{a^{T} x}{a^{T} a} a+x^{\prime}$ and $y=\frac{\beta}{a^{T} a} a+y^{\prime}$ with $a^{T} x^{\prime}=a^{T} y^{\prime}=0$. Then, minimize $\|x-y\|_{2}^{2}$.)
d) Suppose $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}$. Let $S:=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$. We want to find a ball contained in S with maximum radius. Formulate this as a linear program.
(Hint. $\left\{y \mid\|y-x\|_{2} \leq r\right\}$ is the (closed) ball with center x and radius r.)

