

Universität des Saarlandes FR 6.2 Informatik

Dr. Ernst Althaus, Dr. Benjamin Doerr, David Steurer

SS 2005

2. Assignment

Due 6.05.2005

Exercise 1 (5 Points)

Consider the classic *diet problem*: Various foods are available, each unit of which contributes a certain amount toward the minimum daily requirements of various nutritional needs. Each food has a particular cost. The goal is to choose how many units of each food to purchase to meet the minimum daily nutritional requirements, while minimizing the total cost. Formulate this as a linear program, state the dual problem and give an "economic interpretation" of the dual.

Exercises for Optimization

Exercise 2 (2+3 Points)

a) Show that for each linear program of the form

maximize $c^T x$ subject to $Ax \leq b$

there is an equivalent linear program of the form

maximize $c'^T x'$ subject to $A'x' = b', x' \ge 0$.

- b) Show that the following two problems are polynomial-time equivalent.
 - Given a linear program, find a feasible solution or decide that there is none.
 - Given a linear program, find an optimal solution or decide that there is none.

Exercise 3 (3+2 Points)

a) Derive and prove a Theorem of the Alternatives for the system

$$Ax = b, x \ge 0.$$

b) Let $S = \{a_1, \ldots, a_k\} \subset \mathbb{R}^n$ and let

$$\operatorname{conv}(S) := \left\{ \sum_{i=1}^{k} \lambda_i a_i \mid \lambda_i \ge 0, \sum_{i=1}^{k} \lambda_i = 1 \right\} \subset \mathbb{R}^n$$

denote the convex hull of S.

Show that for each $b \in \mathbb{R}^n$ either b is contained in $\operatorname{conv}(S)$ or there exists a closed half-space $H \subset \mathbb{R}^n$ with $\operatorname{conv}(S) \subseteq H$ and $b \notin H$.

Exercise 4 $(3 + 2 + 2^* + 2^* Points)$

Note that you earn bonus points for 4.c) and 4.d).

- a) Prove or disprove that the following sets are (finite) intersections of halfspaces.
 - (a) $\{x \in \mathbb{R}^n \mid |x_i| \le 1\}$
 - (b) $\{x \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i| \le 1\}$
 - (c) $\{x \in \mathbb{R}^n \mid x_1 > 0\}$
- b) Consider the piecewise linear function $f(x) = \min_j f^{(j)}(x)$ for affine linear functions $f^{(j)}(x) = d^{(j)} + \sum_i c_i^{(j)} x_i$. Reduce the following problem to an equivalent linear programming problem.

maximize f(x) subject to $Ax \leq b$.

c) Let $H = \{x \in \mathbb{R}^n \mid a^T x \leq \beta\}$ be a half-space and $P = \{x \in \mathbb{R}^n \mid a^T x = \beta\}$ the corresponding hyperplane. Define $d_P(x) := \min_{y \in P} ||x - y||_2$.

Show that $d_P(x)$ is a affine linear function if x ranges over H.

(*Hint.* Write $x = \frac{a^T x}{a^T a}a + x'$ and $y = \frac{\beta}{a^T a}a + y'$ with $a^T x' = a^T y' = 0$. Then, minimize $||x - y||_2^2$.)

d) Suppose $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}$. Let $S := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. We want to find a ball contained in S with maximum radius. Formulate this as a linear program.

(*Hint.* $\{y \mid ||y - x||_2 \le r\}$ is the (closed) ball with center x and radius r.)