

Universität des
Saarlandes
FR 6.2 Informatik

Dr. Ernst Althaus, Dr. Benjamin Doerr, David Steurer
SS 2005

Exercises for Optimization

3. Assignment Due 13.05.2005

Exercise 1 (3 Points)
Given the linear program
$(P):$ minimize $c^{T} x$ subject to $A x=b$,
use the dual program to show that exactly one of the following 3 possibilities holds:

- (P) is infeasible,
- (P) is unbounded,
- all feasible solutions of (P) are optimal.

Exercise 2 (3 Points)

Derive and prove a Theorem of the Alternatives for the system

$$
A x<b
$$

(Hint. Consider the problem to maximize t subject to $A x+t \mathbb{1} \leq b$ and its dual problem. $\mathbb{1}$ is the all-ones vector.)

Exercise 3 (3 Points)
Is $x^{*}=(0,4 / 3,2 / 3,5 / 3,0)^{T}$ an optimal solution of (P) ? (Hint. Use complementary slackness.)

$$
\begin{aligned}
& \max 7 x_{1}+6 x_{2}+5 x_{3}-2 x_{4}+3 x_{5} \\
& \text { s.t. } \quad x_{1}+3 x_{2}+5 x_{3}-2 x_{4}+2 x_{5} \leq 4 \\
& 4 x_{1}+2 x_{2}-2 x_{3}+x_{4}+x_{5} \leq 3 \\
& 2 x_{1}+4 x_{2}+4 x_{3}-2 x_{4}+5 x_{5} \leq 5 \\
& 3 x_{1}+x_{2}+2 x_{3}-x_{4}-2 x_{5} \leq 1
\end{aligned}
$$

Exercise 4 (3 Points)
Formulate and prove the theorem of complementary slackness for the following linear program and its dual program:

$$
\begin{array}{rrll}
\max & c^{T} x & +d^{T} y & \\
\text { s.t. } & A x+B y & \leq a \\
& C x & +D y & =b \\
& x & & \geq 0
\end{array}
$$

You may use the rules for forming the dual and the theorem of strong duality.

Exercise 5 (2 +2 Points)

We are given the following optimization problem:
A factory is producing two types of (waist-)belts A and B. A is of better quality than B. The profit is 2 for type A and 1,50 for type B. The production of one belt of type A needs 2 units of time whereas only 1 time unit is needed to produce one belt of type B. There is a daily capacity of 1000 units of time. The leather delivery allows a production of 800 belts per day. There are at most 400 belt buckles for type A per day available and 700 for type B.
Which amount of each type A and B should be produced to maximize the profit?
a) Formulate this problem as a linear program.
b) Solve this problem graphically.

Exercise $6\left(2+2+2^{*}+2^{*}+2^{*}\right.$ Points $)$
Let $D=(V, A)$ be a directed graph with capacities $c: A \rightarrow \mathbb{R}_{\geq 0}$, source $s \in V$ and $\operatorname{sink} t \in V$.
Suppose each arc $a \in A$ can carry a non-negative amount of flow of at most $c(a)$. The total amount of flow entering a vertex $v \neq s, t$ should be equal to the total amount of flow leaving v.
The maximum flow problem asks for maximizing the net amount of flow leaving s, that is the difference between the amount of flow leaving s and the amount of flow entering s.
The following notation may be useful.

$$
\begin{aligned}
\delta^{-}(U) & :=\text { set of arcs entering } U \subseteq V \text { in } D \\
\delta^{+}(U) & :=\text { set of arcs leaving } U \subseteq V \text { in } D \\
\delta^{ \pm}(u) & :=\delta^{ \pm}(\{u\}) \text { for } u \in V
\end{aligned}
$$

You earn bonus points for c)-e).
a) Formulate the maximum flow problem as a linear program (P).
b) Determine the corresponding dual program (D).
c) Let x^{*} and y^{*} be optimal solutions for (P) and (D), respectively.

Formulate the complementary slackness conditions for x^{*} and y^{*}.
d) Show that there exists W with $s \in W \subseteq V-t$ such that all $\operatorname{arcs} \delta^{-}(W)$ carry no flow and each arc $a \in \delta^{+}(W)$ carries flow $c(a)$ in x^{*}. (Hint. Use complementary slackness.)
e) Let $O P T$ denote the objective function value of x^{*}. Now show

$$
O P T=\sum_{a \in \delta^{+}(W)} c(a) \leq \sum_{a \in \delta^{+}(U)} c(a) \text { for all } U \text { with } s \in U \subseteq V-t
$$

Remark. This fact is called 'max-flow min-cut' theorem.

