

Universität des Saarlandes FR 6.2 Informatik

SS 2005

Dr. Ernst Althaus, Dr. Benjamin Doerr, David Steurer

Exercises for Optimization

9. Assignment

Due 1.07.2005

Exercise 1 (3+3+3 points)

- a) Show that the incidence matrix of a directed graph D = (V, A) is totally unimodular.
- b) A consecutive-ones matrix is a 0,1-matrix such that the ones of each row are consecutive.

Show that consecutive-ones matrices are totally unimodular.

c) An interval hypergraph is a hypergraph $\mathcal{H} = (V, \mathcal{E})$ on vertices $V = \{1, \ldots, n\}$ such that each edge in \mathcal{E} consists of consecutive natural numbers.

A stable set in a hypergraph $\mathcal{H} = (V, \mathcal{E})$ is a subset S of V such that each edge $E \in \mathcal{E}$ contains at most one vertex in S.

Show that the maximum weight stable set problem on a hypergraph $\mathcal{H} = (V, \mathcal{E})$ with weights $w: V \to \mathbb{R}$ can be solved in polynomial time if \mathcal{H} is an interval hypergraph.

Hint. For a) and b) you can either use theorems from the lecture or induction on the size of the considered submatrix.

Exercise 2 (3+1 points)Given a directed graph D = (V, A) and a flow $f : A \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{A \ni a \text{ outgoing of } v} f(a) = \sum_{A \ni a \text{ incoming to } v} f(a) \text{ for all vertices } v \in V, \tag{1}$$

can you find a representation of f as a non-negative linear combination of at most |A| functions χ^C for simple cycles $C \subseteq A$ and

$$\chi^C(a) = \begin{cases} 1 & a \in C \\ 0 & a \notin C \end{cases}$$

in time $\mathcal{O}(|V| \cdot |A|)$?

Show that a flow $f : A \to \mathbb{N}_0$ with (1) can be represented as a non-negative *integer* linear combination of simple cycles.

Hint. Try induction on the number of arcs which carry positive flow.

Exercise 3 (4 points) Let $A \in \mathbb{R}^{m \times n}$. Show

herlindisc(A) =
$$\sup_{x \in [0,1]^n} \min_{y} \|A(x-y)\|_{\infty}$$

where the minimum is over all roundings y of x. Hint. You might want to prove the following fact beforehand,

$$\sup_{x'\in[0,1]^k}\min_{y'\in\{0,1\}^k} \|A_0(x'-y')\|_{\infty} = \sup_{x'\in(0,1)^k}\min_{y'} \|A_0(x'-y')\|_{\infty},$$

where A_0 is a $m \times k$ -submatrix of A and the second minimum is over all roundings y' of x'.

Exercise 4 (3 *points*) Compute the linear and hereditary linear discrepancy of the matrix

$$A = (1 \ 2 \ 4 \ \dots \ 2^{n-1}).$$