

Universität des
Saarlandes
FR 6.2 Informatik

SS 2005

Dr. Ernst Althaus, Dr. Benjamin Doerr, David Steurer

Exercises for Optimization

9. Assignment

Due 1.07.2005

Exercise $1(3+3+3$ points $)$
a) Show that the incidence matrix of a directed graph $D=(V, A)$ is totally unimodular.
b) A consecutive-ones matrix is a 0,1-matrix such that the ones of each row are consecutive.

Show that consecutive-ones matrices are totally unimodular.
c) An interval hypergraph is a hypergraph $\mathcal{H}=(V, \mathcal{E})$ on vertices $V=\{1, \ldots, n\}$ such that each edge in \mathcal{E} consists of consecutive natural numbers.

A stable set in a hypergraph $\mathcal{H}=(V, \mathcal{E})$ is a subset S of V such that each edge $E \in \mathcal{E}$ contains at most one vertex in S.

Show that the maximum weight stable set problem on a hypergraph $\mathcal{H}=(V, \mathcal{E})$ with weights $w: V \rightarrow \mathbb{R}$ can be solved in polynomial time if \mathcal{H} is an interval hypergraph.

Hint. For a) and b) you can either use theorems from the lecture or induction on the size of the considered submatrix.

Exercise $2(3+1$ points $)$
Given a directed graph $D=(V, A)$ and a flow $f: A \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\begin{equation*}
\sum_{A \ni a \text { outgoing of } v} f(a)=\sum_{A \ni a \text { incoming to } v} f(a) \text { for all vertices } v \in V \text {, } \tag{1}
\end{equation*}
$$

can you find a representation of f as a non-negative linear combination of at most $|A|$ functions χ^{C} for simple cycles $C \subseteq A$ and

$$
\chi^{C}(a)= \begin{cases}1 & a \in C \\ 0 & a \notin C\end{cases}
$$

in time $\mathcal{O}(|V| \cdot|A|)$?
Show that a flow $f: A \rightarrow \mathbb{N}_{0}$ with (1) can be represented as a non-negative integer linear combination of simple cycles.
Hint. Try induction on the number of arcs which carry positive flow.

Exercise 3 (4 points)
Let $A \in \mathbb{R}^{m \times n}$. Show

$$
\operatorname{herlindisc}(A)=\sup _{x \in[0,1]^{n}} \min _{y}\|A(x-y)\|_{\infty}
$$

where the minimum is over all roundings y of x.
Hint. You might want to prove the following fact beforehand,

$$
\sup _{x^{\prime} \in[0,1]^{k}} \min _{y^{\prime} \in\{0,1\}^{k}}\left\|A_{0}\left(x^{\prime}-y^{\prime}\right)\right\|_{\infty}=\sup _{x^{\prime} \in(0,1)^{k}} \min _{y^{\prime}}\left\|A_{0}\left(x^{\prime}-y^{\prime}\right)\right\|_{\infty}
$$

where A_{0} is a $m \times k$-submatrix of A and the second minimum is over all roundings y^{\prime} of x^{\prime}.
Exercise 4 (3 points)
Compute the linear and hereditary linear discrepancy of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 4
\end{array} \ldots 2^{n-1}\right)
$$

