
Exercise 1 (2 Points)
Given a linear program with n free variables, can you find an equivalent program with n+1 nonnegative
variables?
Solution:

Suppose we are given the following LP

(LP ) : max cT x subject to x ∈ P = {x | Ax ≤ b} ⊆ R
n.

First assume that P is bounded. Then we can move the polyhedron in the right direction until it is
fully contained in {x | x ≥ 0}, i.e., there is a real number M ≥ 0 such that

P + M1l = {x + M1l | x ∈ P} = {y | y − M1l ∈ P} ⊆ R
n

≥0.

In general, y and M should be the new variables and we get

(LP ′) : max cT (y − M1l) subject to A(y − M1l) ≤ b.

Formally,
x 7→ (y(x),M(x)) with y(x) = x + ‖x‖∞1l ≥ 0 and M(x) = ‖x‖∞ ≥ 0

maps a feasible solution of (LP ) to a feasible solution of (LP ′) with the same objective function value
and

(y,M) 7→ x = y − M1l

maps a feasible solution of (LP ′) to a feasible solution of (LP ) with the same objective function value.

Exercise 2 (3 Points)
Consider the following scaffold.

Cable 1 and 2 can bear a loading of 300 kg each, cable 3 and 4 only 100 kg each, and cable 5 and 6
only 50 kg each. Neglecting the weight of cables and planks, we are searching for the maximal allowed
total weight y1 + y2 + y3. Formulate this problem as a linear program.
Solution:

We introduce variables z1, . . . , z6 for each cable. First we get the constraint

z1, z2 ≤ 300

z3, z4 ≤ 100

z5, z6 ≤ 50



Since the sum of the (directed) forces at each plank should be zero, we get the following constraints.

z1 + z2 = z3 + z4 + y1 + z6

z3 + z4 = y2 + z5

z5 + z6 = y3

Due to the distribution of the weights and cables at the planks, by the principle of levers (“Hebelge-
setz”) we get

z1 =
6z3 + 3z4 + 2y1 + z6

7

z3 =
2y2 + z5

3

z5 =
2y3

3

The objective is of course to
maximize y1 + y2 + y3

Exercise 3 (3 Points)
Let P = {x ∈ R

n | Ax ≤ b} for some A ∈ R
m×n, b ∈ R

m and let x∗ ∈ P .
We are interested in the objective functions P 3 x 7→ cT x that attain their maximum at x∗.
Show that C := {c ∈ Rn | cT x∗ = maxx∈P cT x} is a cone generated by rows of A, i.e.,

C =

{

∑

i∈I

yi ai | yi ≥ 0

}

for some index set I ⊆ {1, . . . ,m} where aT
i

is the i-th row of A.

Remark. In general, the cone generated by the vectors x1, . . . , xm is the set

cone{x1, . . . , xm} :=
{

∑

λixi | λ1, . . . , λm ≥ 0
}

.

Solution:

Let c be a objective function vector. Then the dual linear program is

min yT b subject to yT A = cT , y ≥ 0

By complementary slackness x∗ ∈ P is optimal if and only if the following system (I) is feasible

yT A = cT

y ≥ 0

0 = yT (b − Ax∗)

where the first two constraints ensure that y is a feasible solution of the dual and the third constraint
is equivalent to yi = 0 for all i such that (b − Ax)i 6= 0. Alltogether, system (I) is feasible if and only
if

c ∈ C =

{

∑

i∈I

yi ai | yi ≥ 0

}

for I = {i | (b − Ax)i = 0}



Exercise 4 (2 + 1 + 2 + 2 Points)
Consider the following linear program.

max −2x1 + 1.5x2 + x3

2x1 + 2x2 + 6x3 + x4 = 18
−2x1 + 3x2 + 4x3 + x5 = 12

xi ≥ 0

a) Identify all basic solutions and determine the value of the objective function for all basic feasible
solutions. What is the optimal solution.

b) Which pairs of feasible basic solutions are adjacent.

c) Sketch the polyhedron

P =

{

x ∈ R
3

≥0 |

(

2 2 6
−2 3 4

)

x ≤

(

18
12

)}

.

To each basic feasible solutions of the linear program give the corresponding vertex of the
polyhedron.

d) Let x∗ be the vertex of P corresponding to the optimal solution of the linear program. Originating
at x∗, draw the vectors which generate the cone of all vectors c such that cT x∗ = maxx∈P cT x.
(cf. Exercise 3)

Solution:

All pairs of distinct columns are linearly independent. The basic feasible solutions are

v1 = (0, 0, 3, 0, 0)T bases: {1, 3}, {2, 3}, {3, 4}, {3, 5}

v2 = (0, 4, 0, 10, 0)T bases: {2, 4}

v3 = (0, 0, 0, 18, 12)T bases: {4, 5}

v4 = (9, 0, 0, 0, 30)T bases: {1, 5}

v5 = (3, 6, 0, 0, 0)T bases: {1, 2}

All other bases are infeasible. v2 is the optimal solution. The objective function values of the other
points can be computed easily.
b) All pairs of vertices are adjacent except of {v2, v4} and {v3, v5}.
c)To sketch the given polyhedron you should draw in a 3-dimensional coordinate system all points
according to the first three components, i.e.,

vP

1 = (0, 0, 3)T

vP

2 = (0, 4, 0)T

vP

3 = (0, 0, 0)T

vP

4 = (9, 0, 0)T

vP

5 = (3, 6, 0)T

Now, connect each pair of adjacent vertices by a straight line edge. To find the vectors generating the
cone of objective function vectors for which vP

2 is optimal we have to look at the active constraints



and the corresponding vectors, i.e.,

−x1 ≤ 0 (−1, 0, 0)T

−x3 ≤ 0 (0, 0,−1)T

−2x1 + 3x2 + 4x3 ≤ 12 (−2, 3, 4)T

The vectors given on the right generate the cone of objective function vectors for which vP
2 is an

optimal solution.

Exercise 5 (3 + 3∗ + 2 Points)
Let ∅ 6= X ⊆ R

d be of finite cardinality and let u, v,w ∈ conv(X) arbitrary.

a) Prove Caratheodory’s Theorem which is

∃x0, . . . , xd ∈ X. u ∈ conv{x0, . . . , xd}.

Solution:

In the following we will use X as index set for our variables.

The polyhedron
{λ ∈ R

X |
∑

x∈X

λxx = u,
∑

x∈X

λx = 1, λ ≥ 0}

is non-empty (u ∈ conv(X)) and bounded (0 ≤ λ ≤ 1l). Thus1, the polyhedron contains a basic
feasible solution λ∗. Since there are d + 1 equality constraints, at most d + 1 entries of λ∗ are
nonzero. Hence, u is contained in the convex hull of at most d + 1 points

{x ∈ X | λ∗
x > 0}.

b) Also prove the following extension of Caratheodory’s Theorem. (Bonus)

∃x1, . . . , xd ∈ X. u ∈ conv{v, x1, . . . , xd}.

Solution:

In the following we will use X ∪ {v} as index set for our variables.

The polyhedron

P =

{

λ ∈ R
X∪{v} | λvv +

∑

x∈X

λxx = u, λv +
∑

x∈X

λx = 1, λ ≥ 0

}

= {λ | Aλ = b, λ ≥ 0}

is non-empty (u ∈ conv(X)) and bounded (0 ≤ λ ≤ 1l). Thus, there is a feasible basis B ⊆ X∪{v}
with |B| ≤ d + 1. If B contains v our claim is true. So assume B does not contains v.

Now, the idea is to do a single simplex step in order to bring v into the basis and move another
point out of the basis.

Consider the following subsystem of Aλ = b

ABλB + Avλv = b

1In the lecture we had the following theorem: Every non-empty polyhedron contains a basic feasible solution if and

only if it does not contain a line. Clearly, bounded polyhedra cannot contain a line.



which is equivalent to
λB = A−1

B
b − A−1

B
Avλv = b̄ − Āvλv.

For all λ̄v ≥ 0 such that λ̄B = b̄ − Āvλ̄v ≥ 0 we get a feasible solution λ̄ of P by setting λ̄x = 0
for all x 6∈ B ∪ {v}. Formally, we can write λ̄ = λ̄BIB + λ̄vIv.

Now, we show that we can find a λ′
v such that the corresponding λ′

B
contains at most d positive

entries which implies that u ∈ conv({v} ∪ {x ∈ B | λ′
x > 0}).

Since P is bounded there must be a λ′
v ≥ 0 such that the corresponding λ′ is feasible but

λB = b̄ − Āvλv 6≥ 0 for all λv > λ′
v

Clearly, at least one component of λ′
B

:= b̄ − Āvλ
′
v ≥ 0 must be zero. Thus, λ′

B
has at most d

nonzero entries and u is contained in the convex hull of at most d + 1 points, namely

{v} ∪ {x ∈ B | λ′
x > 0}.

c) Is the following statement true in general?

∃x2, . . . , xd ∈ X. u ∈ conv{v,w, x2, . . . , xd}.

Solution:

Consider a triangle T with vertices {a, b, c} =: X. Now, let v,w be two points in the interior of
T . Clearly, the triangles conv(v,w, a), conv(v,w, b), conv(v,w, c) cannot cover T = conv(a, b, c).
Any point u that is not covered is not contained in any convex hull conv(v,w, x) with x ∈ X.


