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2 Inefficiency of equilibria

The tragedy of the commons and the price of anarchy. We have seen in the preceding lectures
how it is possible to model, using games and solution concepts, the kind of behavior that can arise in
situations where multiple self-interested agents interact. What happens to the global behavior of the
system? The concept of social utility can be used to measure the quality of a given state of a game.

Definition 2.1. The social utility of a game in state s ∈ S is the quantity
∑

i∈N ui(s).

Remark 2.1. There are actually other possible definitions of social utility. The one we gave might be
called utilitarian or egalitarian, as it gives the same weight to all players.

In general, the social utility that derives from the behavior at equilibrium is not the best possible
one; the players of the game would globally be better off if a central optimal coordination was possible.
The question is, how much worse than optimal can the social utility become at an equilibrium? This
question is interesting because, if we knew that equilibria in a game have high social utility, comparable
to the optimal one, then we can obtain more or less the same result as the optimal one without the
need of enforcing the players to choose particular actions – which can often be expensive or impossible.

For example, consider the Bandwidth Sharing game. We have seen that the game has a pure Nash
equilibrium where each of the n players uses a fraction 1/(n+1) of the bandwidth. The payoff for every
player is then 1/(n+1)2, which means that the social utility at the equilibrium is n/(n+1)2 = Θ(1/n).
On the other hand, if every player used only a fraction 1/(2n) of the bandwidth, the payoff of each
player would be 1/(4n), so the corresponding social utility would be 1/4. Notice that is Θ(n) times
larger than the social utility at the equilibrium. Thus, the price paid for the selfishness of the users
is a dramatically decreased social utility. This well-known phenomenon is called the tragedy of the
commons in Economics.

Although for some games the price of selfishness is high, this does not need hold in general.
To quantify the degradation of the social utility, Koutsoupias and Papadimitriou have proposed the
concept of price of anarchy, which is analogue to the notion of approximation ratio for optimization
problems.

Definition 2.2. Let Γ be a normal-form game having a set of states S and let E ⊆ S be a set of
equilibria such that E 6= ∅. The price of anarchy of Γ (with respect to E) is the quantity

maxs∈S
∑

i∈N ui(s)

mins∈E
∑

i∈N ui(s)
.
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Figure 1: Pigou’s network

When the game is defined in terms of costs (ci)i∈N , we instead use the definition

maxs∈E
∑

i∈N ci(s)

mins∈S
∑

i∈N ci(s)
.

Thus with this terminology the price of anarchy of the Bandwidth Sharing game (with respect to
pure Nash equilibria) is Θ(n). Notice from the definition that the price of anarchy of any game is
always at least 1. Notice also that in case the game admits multiple equilibria, the definition implicitly
assumes that the worst one will occur (so that the guarantee always holds).

Exercise 2.1 (The pollution game). In this game there are n countries (the players). Each country
can decide of either passing the legislation to control pollution or not. Pollution control has a cost 3
for the country, while every country that pollutes adds 1 to the cost of all countries. Find the price
of anarchy of the game.

3 Selfish routing

We have seen that the inefficiency of equilibria can be in general high and might not scale well with the
dimension of the system being analyzed. However, it is possible to identify games for which equilibria
are in fact approximately optimal; that is, games with bounded price of anarchy. We will now discuss
a model of network games where this happens.

Pigou’s example. Consider the simple network shown in Figure 1. Two disjoint arcs connect a
source vertex s to a destination vertex t. Each arc is labeled with a cost function c(·) describing the
cost (for example, the travel time) incurred by users of the arc, as a function of the amount of traffic
routed on the arc. In the example, the upper arc has constant cost c1(x) = 1. The cost of the lower
arc is c2(x) = x and thus increases as the arc gets more congested. In fact, the lower arc is cheaper
than the upper arc as long as less than one unit of traffic uses it.

Assume that one unit of traffic has to be routed in the network. This traffic is controlled by a very
large population of players, each player controlling a negligible (infinitesimal) amount of flow from s
to t. In fact, this is called a “nonatomic” selfish routing game because the decision of an individual
player alone has no significant effect on the game. We assume that each player is minimizing its own
cost, which is the sum of the costs of the arcs of the route he selects. Then we can see that the lower
route is a dominant strategy for all players, so in the resulting dominating strategy equilibrium every
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player incurs one unit of cost. The social cost at the equilibrium is 1 (there is one unit of traffic, and
all traffic incurs a cost of 1). In fact this is the only pure Nash equilibrium of the game.

What is the optimal social cost? If we send an amount of x (0 ≤ x ≤ 1) on the upper link, and
1− x on the lower, we obtain a cost of 1 for the players using the upper link, and a cost of 1− x for
the players using the lower link. The social cost is thus

C(x) = x · 1 + (1− x) · (1− x) = 1− x+ x2.

Since C(x) = 2x − 1 and C ′′(x) > 0, the social cost is minimized when x = 1/2, that is, when the
traffic is evenly split. In this case we get a social cost of 3/4. Thus the price of anarchy in this game
(with respect to pure Nash equilibria) is equal to 4/3.

What happens to the price of anarchy in more complex networks, when we increase the number arcs,
or when there are multiple sources and destinations, or when we have non-linear latency functions?
This is what we will study in the following.

3.1 The selfish routing model

A selfish routing game is specified by a network consisting of a directed graph G = (V,A) with node
set V and arc set A, together with a set (s1, t1), . . . , (sk, tk) of source-sink pairs (commodities). Each
player carries an infinitesimal amount of flow associated with one commodity. We denote with Pi the
set of si–ti paths of the network. We define P := ∪ki=1Pi. We allow the graph to contain parallel arcs
between the same pair of nodes.

A state of the game is represented by a flow, that is a function f : P → R+. If f is a flow and
P ∈ Pi, we denote with fP the amount of traffic of commodity i that travels along the path from si
to ti. The game specifies a fixed demand ri ≥ 0 of traffic corresponding to each commodity i. A flow
is feasible for a demand vector r ∈ Rk

+ if for all commodities i,
∑

P∈Pi
fP = ri.

Each arc a ∈ A has an associated cost function ca : R+ → R+. The cost functions are assumed
to be nonnegative, continuous and nondecreasing. A nonatomic selfish routing game can thus be
summarized by the triple (G, r, c), where G is the graph, r is the demand vector and c is the vector of
cost functions.

What is the cost incurred by the players? If a player is routing along a path P and the global
state of the game is represented by the flow f , the cost of the player is

cP (f) :=
∑
a∈P

ca(fa)

where fa :=
∑

P∈P:a∈P fP denotes the total amount of traffic using arc a.

Remark 3.1. Be careful not to confuse the two notations fP and fa. The first gives the flow traveling
along a certain path P , without considering flows associated to other paths, even when they have some
arc in common with the path P . The quantity fa gives instead the total amount of flow traveling
along a given arc a. We will avoid confusion by using capital letters for paths and small letters for
arcs.

The social cost is measured as follows: the cost of a flow f is given by

C(f) :=
∑
P∈P

fP cP (f).
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Figure 2: An example network

Equivalently (prove this), this can be expressed as the sum over all arcs

C(f) =
∑
a∈A

faca(fa).

Example 3.1. Consider the network in Figure 2. Here we assume two commodities (k = 2) with
a demand of one each (demand vector r = (1, 1)). The source and destinations are (s1, t1) for the
first commodity and (s2, t2) for the second. The graph contains two s1–t1 paths (P1 = {P0, P1}) and
one s2–t2 path (P2 = {P2}). The paths are the following: P0 = {a1}, P1 = {a2, a4}, P2 = {a3, a4}.
Finally, the cost functions are c1(x) = 2, c2(x) = 0, c3(x) = 1 + 2x, c4(x) = x.

An example of feasible flow for the network is the flow f defined by fP0 = 1/2, fP1 = 1/2, fP2 = 1.
Notice that in this case fa1 = fP0 = 1/2, fa2 = fP1 = 1/2, fa3 = fP2 = 1, fa4 = fP1 + fP2 = 3/2. The
cost of this flow is thus C(f) = (1/2) · 2 + (1/2) · 0 + 1 · 3 + (3/2) · (3/2) = 25/4.

We can now define an equilibrium concept for nonatomic selfish routing games.

Definition 3.2. Let f be a feasible flow for the nonatomic instance (G, r, c). The flow f is an
equilibrium flow if, for every commodities i = 1, . . . , k and every pair of paths P, P ′ ∈ Pi,

if fP > 0 then cP (f) ≤ cP ′(f).

Notice that a consequence of the definition is that in an equilibrium flow, all nonzero si–ti path
flows fP have the same cost, irrespective of P , for any P ∈ Pi.

Example 3.3. In Pigou’s example (Figure 1), the flow that sends all the traffic along the lower arc
is an equilibrium flow.

Example 3.4. Consider again Example 3.1. The flow f mentioned in the example is not an equilibrium
flow: consider the paths P0 and P1. We have fP0 > 0 while cP0(f) = 2 > cP1(f) = 3/2. Thus, the
players on the path P0 have an incentive to change their route to P1.

Instead, the flow g defined by gP0 = 0, gP1 = 1, gP2 = 1 is an equilibrium flow (check the
inequalities!).
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Figure 3: Braess’ paradox

Example 3.5 (Braess’ paradox). The following example shows that in selfish routing games counter-
intuitive phenomena can arise. Consider the network on the left of Figure 3. There are two routes,
each with combined cost 1 + x when x traffic is sent along the route. Assume that there is a unit
demand of traffic to be routed. Then the equilibrium flow is to split the traffic evenly (why?) and the
total cost experienced by the traffic is 3/2.

Now suppose that, in order to decrease the cost encountered by the traffic, we build a zero-cost
arc connecting the midpoints of the existing routes, as on the right of Figure 3. What is the new
equilibrium? There is a new route s → v → w → t and using this route is a (weakly) dominant
strategy. Thus at equilibrium all the traffic is sent along this path. The total cost becomes thus 2,
which is higher than before!

3.2 Existence of equilibrium flows

Our aim of this section is to show that a nonatomic selfish routing game always admits an equilibrium
flow. We will make use of a characterization of optimal flows.

Definition 3.6. An optimal flow for instance (G, r, c) is a feasible flow f that minimizes
∑

a∈A faca(fa).

To simplify the discussion, assume that for any arc a, the function x · ca(x) is continuosly differ-
entiable and convex. Recall that x · ca(x) is the contribution to the social cost of the traffic on arc a.
Let c∗a(x) := (x · ca(x))′ = ca(x) + xc′a(x) denote the marginal cost function for arc a. For example, if
ca(x) = x3 then c∗a(x) = 4x3. Recall that with c∗P (f) we mean the quantity

∑
a∈P c

∗
a(f). Then it is

possible to prove the following characterization (we omit the proof).

Proposition 3.1. Under the above hypotheses, a feasible flow f∗ is an optimal flow for (G, r, c) if
and only if, for every commodity i = 1, 2, . . . , k and every pair of paths P, P ′ ∈ Pi,

if f∗P > 0 then c∗P (f∗) ≤ c∗P ′(f∗).
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Notice the striking similarity between the above condition and the one in Definition 3.2! In fact,
the conditions are the same, except that one is defined on the original costs c of the network, and
the other on the marginal costs c∗. So we could say that optimal flows and equilibrium flows can be
defined in the “same” way, but with respect to different cost functions.

Corollary 3.2. A feasible flow is an optimal flow for (G, r, c) if and only if it is an equilibrium flow
for (G, r, c∗).

The idea now is the following: since optimal flows always exist (no matter which global function
we use), we show that equilibrium flows exist by seeing them as optimal flows for a different notion
of social cost. That is, we want to make a statement similar to Corollary 3.2, but in the “opposite”
direction.

Let ha(x) :=
∫ x
0 ca(y)dy. We make this choice because now h′a(x) = ca(x). We also use the

following definition.

Definition 3.7. The function

Φ(f) :=
∑
a∈A

∫ fa

0
ca(x)dx =

∑
a∈A

ha(fa)

is called the potential function of a nonatomic instance (G, r, c).

We can now invoke Proposition 3.1, except that we consider the minimization of Φ(·) instead of
the minimization of C(·); that is, we use the function ha(x) in place of x ·ca(x). Then what was before
c∗a(x) = (x · ca(x))′ is now h′a(x) = ca(x), so that the second part of Proposition 3.1 is stating that
we have an equilibrium flow with respect to costs (ca)a∈A. We have reformulated Proposition 3.1 as
follows.

Proposition 3.3. A feasible flow is an equilibrium flow for (G, r, c) if and only if it is a global
minimum of the corresponding potential function Φ given in Definition 3.7.

Armed with this proposition we can now prove our main existence result.

Theorem 3.4. Let (G, r, c) be a nonatomic instance. Then

1. The instance (G, r, c) admits at least one equilibrium flow.

2. If f and g are equilibrium flows for (G, r, c) then ca(fa) = ca(ga) for every arc a.

Proof. By its definition, the set of feasible flows is a compact (= closed and bounded) subset of
R|P|. Arc cost functions are continuous, so the potential function is also continuous. By Weierstrass’
Theorem from elementary analysis (remember?), Φ achieves a minimum on this set. By Proposition
3.3, every one of this minima corresponds to an equilibrium flow of (G, r, c). This proves (1).

Part (2) can be proved by using the fact that f and g are both minimizers of Φ and the fact that
Φ is convex, thus it must be constant between f and g. Moreover Φ is the sum of convex terms, so
every term

∫ x
0 ca(x)dx must be linear between f and g, which implies that ca is constant between f

and g.
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Example 3.8. We can use Corollary 3.2 to find an optimal flow for the Braess network (right part
of Figure 3). If we compute the marginal cost functions, we obtain (x · x)′ = 2x for the arcs that had
cost x, while the arcs with constant cost (0 and 1) remain unaltered (because for example (x ·1)′ = 1).
If we search an equilibrium flow in the network with modified costs, we obtain the flow that sends half
unit of traffic on the upper path, half unit on the lower path, and no unit on the zig-zag path. By
Corollary 3.2 this flow is the optimal flow for the network with the original cost functions. It has cost
3/2. On the other hand, we saw in Example 3.5 that the equilibrium flow has cost 2. So the price of
anarchy for the Braess graph is 4/3 (as it was for the Pigou network).

4 The price of anarchy for selfish routing

4.1 Bound using the potential function

Having proved in the previous section that an equilibrium flow always exists, we can now analyze the
price of anarchy of selfish routing.

We first show that the type of cost functions plays an important role.

Example 4.1 (Nonlinear Pigou). Consider again Pigou’s network, except that now the linear cost
function c2(x) = x is replaced by the quadratic function c2(x) = x2.

It is easy to see that once more, an equilibrium flow sends all the demand (which is equal to 1) on
the lower link, for a social cost of 1. What is the optimal flow? If we send an amount of x (0 ≤ x ≤ 1)
on the upper link, and 1− x on the lower, we obtain a cost of 1 for the players using the upper link,
and a cost of (1− x)2 for the players using the lower link. The social cost is thus

C(x) = x · 1 + (1− x) · (1− x)2 = x+ (1− x)3.

As C ′(x) = 1− 3(1− x)2, we obtain the minimum when (1− x)2 = 1/3, that is when x = 1− 1/
√

3.
The cost in this case is 1 − (2/3)(1/

√
3) ' 0.615. Thus the price of anarchy is ' 1/0.615 ' 1.626.

Notice that this is larger than the 4/3 we obtained with a linear cost function.
In fact, if we generalize the example with c2(x) = xp, we obtain a price of anarchy growing roughly

as p/ln p. Thus the price of anarchy is not bounded if we do not limit the class of cost functions.

The example shows that if the cost functions can be “highly nonlinear”, the price of anarchy can
be very high even on very simple networks. But what if the cost functions are for example linear or
quadratic? Can we obtain a useful bound in this case?

Theorem 4.1. Suppose that x · ca(x) ≤ γ ·
∫ x
0 ca(y)dy for all a ∈ A and x ≥ 0. Then the price of

anarchy of (G, r, c) is at most γ.

Proof. Let f be an equilibrium flow and let f∗ be an optimal flow. Since cost functions are non-
decreasing, the cost of a flow is always at least its potential function value (why?), in particular
C(f∗) ≥ Φ(f∗). By the hypothesis, the cost of any flow is at most γ times the potential value of the
flow. We can conclude, using Proposition 3.3,

C(f) ≤ γ · Φ(f) ≤ γ · Φ(f∗) ≤ γ · C(f∗).
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Corollary 4.2. The price of anarchy in nonatomic instances with cost functions that are polynomials
of degree at most p (with nonnegative coefficients) is at most p+ 1.

Proof. For any arc a, there exist nonnegative coefficients b0, . . . , bp such that

ca(x) = bpx
p + bp−1x

p−1 + . . .+ b0.

Then
x · ca(x) = bpx

p+1 + bp−1x
p + . . .+ b0x.

On the other hand, ∫ x

0
ca(y)dy =

1

p+ 1
bpx

p+1 +
1

p
bp−1x

p + . . .+ b0x.

By direct comparison we conclude that

x · ca(x) ≤ (p+ 1)

∫ x

0
ca(y)dy,

so by Theorem 4.1 the price of anarchy is at most p+ 1.

4.2 Bound using the variational inequality

In this section we improve the upper bound for affine cost functions (with nonnegative coefficients),
that is, functions of the form ca(xa) = b1axa + b0a where b0a, b1a ≥ 0. In this case Corollary 4.2 gives
an upper bound of 2 on the price of anarchy. We will show an improved upper bound of 4/3. Since
this matches the lower bound from Pigou’s example, this improved upper bound is best possible.

We will use another characterization of equilibrium flows, given by the following proposition.

Proposition 4.3. Let f be a feasible flow for (G, r, c). Then f is an equilibrium flow if and only if∑
a∈A

faca(fa) ≤
∑
a∈A

gaca(fa) (1)

for every flow g feasible for (G, r, c).

Proof. Fix a flow f and define the function Hf on the set of feasible flows as follows:

Hf (g) =

k∑
i=1

∑
P∈Pi

gP cP (f) =
∑
a∈A

gaca(fa).

The value Hf (g) denotes the cost of a flow g after the cost function of each arc a has been changed to
the constant function everywhere equal to ca(fa). By the second definition of Hf , the claim we have
to prove is equivalent to the assertion that a flow f is an equilibrium flow if and only if it minimizes
the function Hf (·) over all feasible flows.

Consider now the first definition of Hf . From this we see that a flow g minimizes Hf if and only if
it is a minimum cost flow with respect to the constant cost functions ca(fa). That is, it is the optimum
of a minimum cost flow problem without any capacity constraints or integrality constraints. Such a
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flow g is optimum if and only if it only sends flow along paths of minimum cost, that is gP > 0 only
for paths P that minimize cP (f) over all si–ti paths. But if f is an equilibrium flow and g = f , this
is clearly satisfied. So every equilibrium flow f satisfies (1). On the other hand, suppose f is not an
equilibrium flow. Then there is a commodity i and two paths P, P ′ ∈ Pi such that

fP > 0 and cP (f) > cP ′(f).

Now take g to be the same as f except that the flow on path P is moved to path P ′. Since the cost
is strictly smaller, we obtain

k∑
i=1

∑
P∈Pi

gP cP (f) <
k∑

i=1

∑
P∈Pi

fP cP (f),

in other words, (1) is not satisfied. Thus (1) is satisfied for all feasible g if and only if f is an equilibrium
flow.
Remark. Observe that (1) can be written as

(f − g) · ∇Φ(f) ≤ 0,

which explains the name variational inequality. This kind of inequality is common in optimization,
economics and physics.

We can now prove our improved bound (note: the proof given here is easier than the one in the
book by Nisan et al.).

Theorem 4.4. Let f be an equilibrium flow of instance (G, r, c) where the functions (ca)a∈A are affine,
and let f∗ be an optimal flow for the same instance. Then C(f) ≤ (4/3)C(f∗).

Proof. Thanks to Proposition 4.3, we have

C(f) =
∑
a∈A

faca(fa)

≤
∑
a∈A

f∗aca(fa) =

=
∑
a∈A

f∗aca(f∗a ) +
∑
a∈A

f∗a (ca(fa)− ca(f∗a )) =

= C(f∗) +
∑
a∈A

f∗a (ca(fa)− ca(f∗a )).

For the arcs where f∗a ≥ fa, this bound is already sufficient because the cost functions are nondecreasing
and so the second term of the sum becomes negative. So it is enough to focus on arcs for which f∗a < fa.
In this case, f∗a (ca(fa)− ca(f∗a )) is equal to the area of the shaded rectangle in Figure 4. Note that the
area of any rectangle whose upper-left corner point is (0, ca(fa)) and whose lower-right corner point
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Figure 4: Illustration of the proof of Theorem 4.4

lies on the line representing ca(y) = b1aya + b0a, is at most half of the triangle defined by the three
points (0, ca(fa)), (0, b0a) and (fa, ca(fa)). In particular,

f∗a (ca(fa)− ca(f∗a )) ≤ 1

4
faca(fa).

This completes the proof, as we obtain

C(f) ≤ C(f∗) +
1

4
C(f),

that is, C(f) ≤ (4/3)C(f∗).

4.3 Bicriteria bound for general cost functions

As we have seen, for general cost functions it is not possible to give a bound on the price of anarchy,
not even on very simple networks. However one can prove the following.

Theorem 4.5. If f is an equilibrium flow for (G, r, c) and f∗ is any feasible flow for (G, 2r, c), then
C(f) ≤ C(f∗).

That is, the equilibrium flow has better cost than any flow that has to send twice as much traffic
(including the optimal flow for twice the traffic). Intuitively, this means that the inefficiency due to
selfish routing can be repaired by using links that have twice the “capacity” of the original ones.

Proof. Let f and f∗ be as in the statement of the theorem. For a commodity i, let di denote the
minimum cost of a si–ti path with respect to the flow f , so that C(f) =

∑
i ridi.

Define a new set of cost functions c̄ as follows: c̄a(x) = max{ca(fa), ca(x)} for each a ∈ A. Let
C̄(·) denote the cost of a flow in the instance (G, r, c̄). Observe that C̄(f∗) ≥ C(f∗) and C̄(f) = C(f).

Now for every arc a, c̄a(x)− ca(x) is zero for x ≥ fa and bounded above by ca(fa) for x < fa, so
x(c̄a(x)− ca(x)) ≤ ca(fa)fa for all x ≥ 0. Thus

C̄(f∗)− C(f∗) =
∑
a

f∗a (c̄a(f∗a )− ca(f∗a )) ≤
∑
a

ca(fa)fa = C(f).
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On the other hand, the modified cost c̄a(·) is always at least ca(fa), so the cost c̄P (·) of a path
P ∈ Pi is always at least cP (f) ≥ di. We obtain

C̄(f∗) =
∑
P∈P

c̄P (f∗)f∗P ≥
k∑

i=1

∑
P∈Pi

dif
∗
P =

k∑
i=1

2ridi = 2C(f).

Comparing the two inequalities we obtain

2C(f) ≤ C̄(f∗) ≤ C(f) + C(f∗),

so that C(f) ≤ C(f∗), as claimed.


