
Computational Game Theory

Vincenzo Bonifaci

June 8, 2010

3 Congestion and Potential Games

Recall that a finite normal form game Γ is given by

• a finite set K = {1, . . . , k} (the set of players);

• for each player i = 1, . . . , k, a finite set Σi (the strategy sets);

• for each player i = 1, . . . , k, a function ui : Σ1 × . . .× Σk → R (the utility functions).

An element s ∈ Σ := Σ1 × . . .× Σk is called a state of the game. For a given s ∈ Σ and i = 1, . . . , k,
the set

Bi(s) := {s′ ∈ Σ : s′j = sj for all j 6= i}

is called the neighborhood of s with respect to player i.
A pure Nash equilibrium of Γ is a state that is locally optimal with respect to any player’s neigh-

borhood; that is, a state s such that, for every i ∈ K and for every s′ ∈ Bi(s), ui(s) ≥ ui(s′).
Consider the improvement dynamics graph associated to the game, which is the graph with node set

Σ and an arc (s, s′) whenever s′ ∈ Bi(s) for some i such that ui(s
′) > ui(s). A pure Nash equilibrium

corresponds to a sink in the graph, that is, a node with no successors.

Congestion games. In a congestion game, strategies and payoffs are defined in terms of a finite
set E of resources and in terms of congestion functions (also delay functions) d : E ×{1, . . . , k} → R.
Every player has to select one among different subsets of resources: Σi ⊆ 2E for every i = {1, . . . , k}.
Define xs(e) = |{i : e ∈ si}|. Then the cost experienced by player i is defined as

costi(s) = −ui(s) :=
∑
e∈si

de(xs(e)).

Thus, each player chooses a subset of the resources and the cost he pays is the total congestion of the
resources he is choosing. The congestion of a resource only depends on the number of players choosing
that resource. An important subclass (network congestion games) is obtained when E is the set of
edges of a network, and every Σi is the set of paths connecting two terminals (ai, bi). We assume the
network to be directed. Figure 1 shows an example of a network congestion game.

In the example, E = {e1, e2, e3, e4, e5}, and Σ1 = Σ2 = Σ3 = {{e1, e2}, {e1, e3, e5}, {e4, e5}}. The
congestion functions are indicated along the edges, for example de3(3) = 8. If player 1 plays {e1, e2},

1



3 CONGESTION AND POTENTIAL GAMES 2

a1, a2, a3 b1, b2, b3

2/3/5

e1

4/6/7

e4

2/3/6

e2

1/2/8 e3

1/5/6

e5

Figure 1: Example of a network congestion game.

player 2 plays {e1, e3, e5} and player 3 plays {e4, e5}, then the congestion level (xe) on e1 is 2, on e2
is 1, on e3 is 1, on e4 is 1, and on e5 is 2. So player 1 pays 3 + 2 = 5, player 2 pays 3 + 1 + 5 = 9,
and player 3 pays 4 + 5 = 9. This is not a Nash equilibrium, since for example player 2 can defect to
{e1, e2} and get a new cost of 3 + 3 = 6 < 9.

Potential games. An exact potential function is a function φ : Σ→ R such that

φ(s)− φ(s′) = ui(s
′)− ui(s) (= costi(s)− costi(s

′))

for each s, s′ ∈ Σ such that s′ ∈ Bi(s).

Example 3.1 (Prisoner’s dilemma). Assume the cost matrices are given by

cost1 =

[
4 1
5 2

]
, cost2 =

[
4 5
1 2

]
,

The reader can verify that

φ =

[
0 1
1 2

]
is an exact potential function for the game.

A game admitting an exact potential function is called an exact potential game. The potential
function always decreases along the edges of the improvement dynamics graph. So if Γ is a potential
game, the improvement dynamics graph of Γ cannot have cycles. This means that one can always find
a pure Nash equilibrium of a potential game using a local search algorithm: start at any state, and
apply an improvement as long as possible. If the game is finite, the process must end and the final
solution must be an equilibrium.

What is the relation between congestion and potential games?



3 CONGESTION AND POTENTIAL GAMES 3

Theorem 3.1 (Rosenthal 1973). Every congestion game is an exact potential game.

Let Γ = (k,E, (Σi)
k
i=1, (de)e∈E) be a congestion game. We take

φ(S) =
∑
e∈E

xe(S)∑
i=1

de(i).

Proof. We only need to verify that φ is a potential function for Γ. Consider a deviation by any player.
We can assume that this player is player number k; otherwise, we can renumber the players (the
potential function is not affected by the numbering). Notice that we can write φ(S) as

∑k
i=1 φi(S),

where, if we denote by x≤ie (S) the number of players with index ≤ i that use resource e in S,

φi(S) =
∑
e∈Si

de(x
≤i
e (S)).

We then obtain

φ(S)− φ(S′) =
k∑

i=1

(φi(S)− φi(S′))

= φk(S)− φk(S′)

=
∑
e∈Sk

de(x
≤k
e (S))−

∑
e∈S′

k

de(x
≤k
e (S′))

=
∑
e∈Sk

de(xe(S))−
∑
e∈S′

k

de(xe(S
′))

= costk(S)− costk(S′).

In fact, Monderer and Shapley proved that the converse of Rosenthal’s theorem is true as well.
We will not prove this result.

Theorem 3.2 (Monderer and Shapley 1996). Every exact potential game is equivalent to a congestion
game.

Finding an equilibrium in a congestion game

A congestion game always has at least one pure Nash equilibrium, but how computationally hard is
it to find one? It is always possible to apply the local search algorithm, however that might require a
very large number of iterations to complete. Is there any faster way of finding the equilibrium? We
show that the answer is “no”, unless a whole host of local search problems can be solved efficiently.
This seems unlikely, given the current state of research. The situation is akin to that of NP-complete
problems; these problems are to be considered computationally hard unless some revolutionary devel-
opment will occurr in the theory of algorithms. However the correct complexity class for reasoning
about local search problems is not NP, but rather the class known as PLS.



3 CONGESTION AND POTENTIAL GAMES 4

Definition 3.2 (PLS). A minimization problem Π ∈ PLS is given by:

1. a set of (polynomial-time recognizable) instances I over some fixed alphabet V ;

2. for each instance x ∈ I, a set of feasible solutions Fx ⊆ V p(|x|) where p(·) is a fixed polynomial;

3. for each x ∈ I and y ∈ Fx, a neighborhood Nx(y) ⊆ Fx;

4. a polynomial-time function init which, given x ∈ I, produces a feasible solution init(x) ∈ Fx;

5. a polynomial-time function cost which, on input x ∈ I and y ∈ V p(|x|), determines whether
y ∈ Fx and, if so, computes a nonnegative integer cost(x, y);

6. a polynomial-time function improve which, given x ∈ I and y ∈ Fx returns an y′ ∈ Nx(y) with
cost(x, y′) < cost(x, y), or, if no such y′ exists, returns no.

An instance of the PLS problem is: “Given x ∈ I, find a local minimum, that is, a y ∈ Fx such that
improve(x, y)=no.” Maximization PLS problems can be defined analogously.

Every problem in PLS has a straightforward standard search algorithm: using function init, start
with any feasible solution for the given instance, then call the function improve on this solution; if
the response is no then we have found a local optimum. Otherwise the output of improve becomes
the new current solution and we continue by invoking improve again, and so on. Since at every step
the cost of the current solution has to decrease by at least one, sooner or later a local optimum has
to be found. The problem with this algorithm is that the number of steps could be exponential in the
size of the instance. Indeed, for every PLS-complete problem there are such instances. On the other
hand, the number of steps can never be larger than the cost of the initial solution.

It should be now clear that, by the proof of Rosenthal’s theorem, finding a pure Nash equilibrium
for a congestion game is a problem in the class PLS: it is equivalent to finding a local optimum of the
potential function φ, where the feasible solutions are all states and the neighborhood of a state is the
set of states which arise from the deviation of just one player. However, this does not directly imply
a polynomial algorithm, since, again, improvements of φ can be small and exponentially many.

We can extend the usual notion of reduction to problems in PLS.

Definition 3.3. A local search problem Π is PLS-reducible to another problem Π′ if there are two
polynomial-time algorithms A1, A2 with the following properties:

1. Algorithm A1 maps an instance x of Π into an instance A1(x) of Π′;

2. Algorithm A2 maps an instance x of Π together with a solution y′ of A1(x) into a solution y of
x;

3. Whenever y′ is a local optimum for A1(x), A2(x, y
′) is a local optimum for x.

Proposition 3.3. If Π is PLS-reducible to Π′, and Π′ is solvable in polynomial time, then Π is solvable
in polynomial time.

Proposition 3.4. If Π is PLS-reducible to Π′, and Π′ ∈ PLS, then Π ∈ PLS.



3 CONGESTION AND POTENTIAL GAMES 5

Definition 3.4. A local search problem Π ∈ PLS is PLS-complete if each problem Π′ ∈ PLS is
PLS-reducible to Π.

Corollary 3.5. If Π is PLS-complete and Π can be solved in polynomial time, then any problem in
PLS can be solved in polynomial time.

We now show that one cannot find a pure Nash equilibrium in a congestion game in polynomial
time unless all PLS problems can be solved in polynomial time.

Theorem 3.6. It is PLS-complete to find a pure Nash equilibrium in a congestion game.

Proof. Let not-all-equal 3sat (nae-3sat) be the problem of finding, given a set of clauses, a truth
assignment such that the truth values of the three literals in every clause are never all equal. Such a
truth assignment is said to satisfy the clauses. A local search version of this problem is the following:
given an instance of nae-3sat with weights on its clauses and containing positive literals only, find
a truth assignment that satisfies a set of clauses whose total weight cannot be increased by flipping
a variable. This problem, known as posnae-3sat, was shown to be PLS-complete by Schäffer and
Yannakakis in 1991.

Example 3.5. Consider the posnae-3sat instance with four variables (y1, y2, y3, y4) and the clauses:

c1 = (y1, y2, y3); c2 = (y1, y2, y4); c3 = (y1, y3, y4); c4 = (y2, y3, y4)

with weights
w1 = 1; w2 = 2; w3 = 2; w4 = 3.

If we start with the solution y = (true, true, true, true), no clause is satisfied and the total weight
is 0. So let’s flip for example y2 to false. The new total weight is 1 + 2 + 3 = 6 because we satisfy
clauses 1, 2, and 4. We can improve again by flipping y4 to false. Now all clauses are satisfied so we
reached a local optimum (in this case it is also a global optimum, but that is not important).

We now describe a PLS-reduction from posnae-3sat to the problem of finding a pure equilibrium
in a congestion game. Given an instance of posnae-3sat, we construct a congestion game as follows:
for each 3-clause c of weight w we have two resources ec and e′c, with congestion cost that is 0 if there
are two or fewer players, and w otherwise. The players correspond to variables. Every player x has
two strategies: one that contains all ec’s for clauses that contain x, and another that contains all e′c’s
for the same clauses. Smaller clauses are implemented in a similar way.

Why did we use this construction? Because in any state s, the total cost in the game is exactly
the sum of all clauses’ weights, minus the value of the posnae-3sat solution corresponding to s.

Example 3.6. The instance in the example above is reduced to a congestion game with four players
and eight resources: e1, e

′
1, . . . , e4, e

′
4. The strategy sets are:

Σ1 = {{e1, e2, e3}, {e′1, e′2, e′3}},
Σ2 = {{e1, e2, e4}, {e′1, e′2, e′4}},
Σ3 = {{e1, e3, e4}, {e′1, e′3, e′4}},
Σ4 = {{e2, e3, e4}, {e′2, e′3, e′4}}.



3 CONGESTION AND POTENTIAL GAMES 6

Moreover, de1 = de′1 = (0, 0, 0, 1, 1), de2 = de′2 = (0, 0, 0, 2, 2), de3 = de′3 = (0, 0, 0, 2, 2), de4 = de′4 =
(0, 0, 0, 3, 3). In the solution y = (true, true, true, true), the congestion levels are:

de1(3) = 1, de2(3) = 2, de3(3) = 2, de4(3) = 3,

de′1(0) = 0, de′2(0) = 0, de′3(0) = 0, de′4(0) = 0.

In this case, if player 2 flips his strategy to {e′1, e′2, e′4}, the new costs become

de1(2) = 0, de2(2) = 0, de3(3) = 2, de4(2) = 0,

de′1(1) = 0, de′2(1) = 0, de′3(0) = 0, de′4(1) = 0.

The total cost improved by exactly 1+2+3=6, which is the same improvement we have in the posnae-
3sat instance for flipping y2.

Now, the pure Nash equilibria of the congestion game are exactly the states in which no player
can improve his payoff by changing strategy. This means that in the corresponding truth assignment,
no variable can be flipped in order to increase the weight of the clauses which are satisfied by that
variable. Thus, any Nash equilibrium of the congestion game corresponds to a local optimum of the
posnae-3sat instance, which proves the theorem.


