
Presented by

Vera Bazhenova 2010

Computational Geometry and

Geometric Computing

Steven M. LaValle

Robot Motion Planning

 Introduction

 Motion Planning

 Configuration Space

 Sampling-Based Motion Planning

 Comparaison of related Algorithms

Page 2

Page 3

Page 4

 Robot motion planning
encompasses several different
disciplines

 Most notably robotics, computer
science, control theory and
mathematics

 This volume presents an
interdisciplinary account of recent
developments in the field

Page 5

 Most important in robotics is to
have algorithms that convert high-
level specifications of tasks from
humans into low-level descriptions of
how to move

 Motion planning and trajectory
planning are often used for these
kinds of problems

Page 6

Motion Planning

 Given a robot, find a sequence of
valid configurations that moves the
robot from the source to destination

Page 7

Piano Mover’s Motion Planning

 Assume: A computer-aided design
(CAD) model of a house and a piano
as input to an algorithm

 Required: Move the piano from one
room to another in the house without
hitting anything

Page 8

Robot motion planning usually
ignores dynamics and other
differential constraints and focuses
primarily on the translations and
rotations required to move the piano

Piano Mover’s Motion Planning

Page 9

Trajectory Planning

 By Trajectory Planning we are using
robot coordinates because it’s easier,
but we loose visualization

Page 10

 Taking the solution from a robot
motion planning algorithm

 Determining how to move along the
solution in a way that respects the
mechanical limitations of the robot

Piano Mover’s Trajectory planning

Page 11

 We consider planning as a branch of
algorithms

 The focus here includes numerous
concepts that are not necessarily
algorithmic but aid in modeling, solving,
and analyzing planning problems

Page 12

Planning involves:

 State Space: captures all possible
situations that could arise (Position,
Orientation)

 Time: Sequence of decisions that
must be applied over time

 Action: Manipulate the state and it
must be specified how the state

changes when action are applied

Page 13

 Initial and goal states: Starting in
some initial state and trying to arrive at
a specified goal state

 A criterion: Encodes the desired
outcome of a plan in terms of the state
and actions that are executed and
consist of two types, Feasibility and
Optimality

 A plan: imposes a specific strategy or
behavior on a decision maker

Page 14

Compute motion strategies:
 Geometric paths
 Time-parameterized trajectories
 Sequence of sensor-based motion
commands

Achieve high-level goals:
 Go to the door and do not collide
with obstacles
 Build a map of the hallway
 Find and track the target

 Introduction

 Motion Planning

 Configuration Space

 Sampling-Based Motion Planning

 Comparaison of related Algorithms

Page 15

 Introduction

 Motion Planning

 Geometric Representation and
Transformation

 Configuration Space

 Configuration Space

 Comparaison of related Algorithms

Page 16

Page 17

 Work Space: Environment in which
robot operates
 Obstacles: Already occupied spaces of
the world.
 Free Space: Unoccupied space of the
world

Page 18

Continuous representation

Discretization

Graph searching
(blind, best-first, A*)

Geometric modeling consist on two
alternatives:

 A Boundary Representation
 A Solid Representation

Page 19

Let’s define the world W for which there
are two possible choices:

1) a 2D world, in which W = R2

2) a 3D world, in which W = R3

Page 20

The world W contains two kinds of

entities:

 Obstacles: Portions of the world

that are “permanently” occupied

 Robots: Bodies that are modeled

geometrically and are controllable

via a motion plan

Both are considered as Subset of W
Page 21

 The obstacle region O denote the

set of all points in W that lie in one or

more obstacles: Hence, O ⊆ W

 O is a combination of Boolean

primitives H

 Each primitives H is easy to

represent and manipulate

Page 22

 Let’s consider obstacle O as

Convex Polygons

Case of Non convex is returned to the

convex representation

Convex Non Convex

Page 23

 Primitives H are presented by a

set of two points (x,y)

 Each two points describe a line

ax + by + c = 0

f(x,y) = ax + by + c is positive from

one side and negative from the

other side

Page 24

 Obstacle is defined by a set of

vertices (corner) or lines (edges)

described by pairs of two points

Page 25

Example:

f1(x,y) = x-2

f2(x,y) = y-2

f3(x,y) = 1-x

f4(x,y) = 1-y

i = 1.. 4

m = 1.. 4
Page 26

 In 3D, the representation with

primitives is similar to 2D

 Instead of Polygons, we use

Polyhedral

 The lines became planes

Page 27

Semi-Algebraic Models:

 f can be any polynomial

 For example let’s take:

Page 28

Other representation Models:

 3D triangles: Represent complex

geometric shapes as a union of

triangles

 Nonuniform rational B-splines:

find an Interpolation over a set of

points

Page 29

Other representation Models:

 3D triangles:

 Nonuniform rational B-splines:

Page 30

Other representation Models:

 Bitmaps: Discretize a bounded

portion of the world into rectangular

cells

W
O

Page 31

Translation:

 A is the set of Robot points

 h is the transformation applied

to each point of A

 Transformation is defined as

below:

Page 32

Translation: Example

Appling h to the Representation H of a

disc:

Xt

Yt

=
>

Page 33

Rotation:

Given the following Rotation Matrix:

the set of Robot points get rotated

to:

Page 34

A kinematic chain

 Is the assembly of several

kinematic pairs connecting rigid

body segments

Page 35

2D Kinematic Chain:

In the case of two unattached rigid

bodies A1 and A2, there is 6 degrees of

Freedom, two Rotations and four

Translations:

By attaching bodies, degrees of

freedom are removed
Page 36

2D Kinematic Chain: Attaching bodies

 The place at which the links are

attached is called a joint

 Two types of 2D joints: Prismatic

and Revolute

Page 37

2D Kinematic Chain: Attaching bodies

 Revolute Joint: allows one link to

rotate with respect to the other

 Prismatic Joint: allows one link

to translate with respect to the

other Page 38

 Introduction

 Motion Planning

 Configuration Space

 Sampling-Based Motion Planning

 Comparaison of related Algorithms

Page 39

Page 40

A vector q including all degree of

freedom is called a configuration

Page 41

Configuration space (Cspace)
= set of all configurations

Free space (Cfree)
= set of allowed (feasible)

configurations
Obstacle space (Cobstacle)

= set of disallowed configurations

Cspace = Cfree + Cobstacle

Page 42

Path of an object =
= curve in the configuration space

represented either by:
Mathematical expression, or
Sequence of points

Trajectory
= Path + assignment of time to

points along the path

Page 43

Is the set of legal configurations of the

robot

It also defines the topology of continuous

motion

For rigid-object robots (no joints) there

exists:

 a transformation to the robot and

obstacles that turns the robot into a

single point.

Page 44

The C-Space Transform

 Turn Robot to a Point:

Make the Obstacle bigger by applying the

Minkowski addition

Page 45

The C-Space Transform

 1. Robot motion

planning Problem

2. Robot motion

planning Problem

after C-Space

Transformation

 Introduction

 Motion Planning

 Configuration Space

 Sampling-Based Motion Planning

 Comparaison of related Algorithms

Page 47

The motion planning problem consists of

the following:

Input

 geometric descriptions of a robot and its

obstacles

 initial and goal configurations

Output

 a path from start to

finish (or the

Recognition that

none exists

Page 48

Classic Path Planning Approaches

 Roadmap

 Cell decomposition

 Potential field

Page 49

Roadmap

Represent the connectivity of the free

space by a network of 1-D curves, as in

Visibility or Voronoi Diagrams

Roadmap

Potential field

Cell decomp.

Page 50

Visibility Diagram

Construct all of the line segments that

connect vertices to one another

From Cfree, a graph is defined

Converts the problem into graph search

Roadmap

Potential field

Cell decomp.

Page 51

Visibility Diagram

We start by drawing lines of sight from the

start and goal to all “visible” vertices and

corners of the Configuration Space

start

goal

Roadmap

Potential field

Cell decomp.

Page 52

Visibility Diagram

Than draw the lines of sight from every

vertex of every obstacle like before

start

goal

Roadmap

Potential field

Cell decomp.

Page 53

Visibility Diagram

After connecting all vertices of our

obstacles, we obtain following graph

start

goal

start

goal

Roadmap

Potential field

Cell decomp.

Page 54

Visibility Diagram

+ Through the founded Graph we could find

the most shorter path

- But the trajectory is to close to the obstacles

start

goal

start

goal

Roadmap

Potential field

Cell decomp.

Page 55

Voronoi Diagram

Set of points equidistant from the closest

two or more obstacle boundaries

Maximizing the clearance between the

points and obstacles

Roadmap

Potential field

Cell decomp.

Page 56

Voronoi Diagram

 Compute the Voronoi Diagram of C-

space

Roadmap

Potential field

Cell decomp.

Page 57

Voronoi Diagram

 Compute shortest straightline path from

start and Goal to closest point on Voronoi

Diagram

Roadmap

Potential field

Cell decomp.

Page 58

Voronoi Diagram

 Compute shortest path from start to goal

along Voronoi Diagram

Roadmap

Potential field

Cell decomp.

Page 59

Cell decomposition

Decompose the free space into simple cells

and represent the connectivity of the free

space by the adjacency graph of these

cells

Roadmap

Potential field

Cell decomp.

Page 60

Cell decomposition:

Exact decomposition (Trapezoidal)

 Decompose the free space with vertical

lines through the vertices without

intersecting with the forbidden space

Roadmap

Potential field

Cell decomp.

Page 61

Cell decomposition:

Exact decomposition (Trapezoidal)

 Add to the center of each segment and

trapezoid a graph node

Roadmap

Potential field

Cell decomp.

Page 62

Cell decomposition:

Exact decomposition (Trapezoidal)

 Find the shortest path through the

obtained graph with a graph search

algorithm

Roadmap

Potential field

Cell decomp.

Page 63

Cell decomposition:

Approximate decomposition

 One of the most convenient way to make

sampling-based planning algorithms is to

define a grid over C and conduct a discrete

search algorithm

 Neighborhoods: For each grid point q
we need to define the set of nearby grid

points for which an edge may be

constructed

Roadmap

Potential field

Cell decomp.

Page 64

Cell decomposition:

Approximate decomposition

 Once the grid and

neighborhoods

have been defined,

a discrete planning

problem is obtained

Roadmap

Potential field

Cell decomp.

Page 65

Cell decomposition:

Approximate decomposition

 Decompose the C-Space with a start

resolution to cell grid

 Each cell that intersect with obstacles is

forbidden

 Is there some path existing?

Roadmap

Potential field

Cell decomp.

Page 66

Cell decomposition:

Approximate decomposition

 If no Path is existing than refine the

resolution until a solution is found

Roadmap

Potential field

Cell decomp.

Page 67

Potential field

Define a potential function over the free

space that has a global minimum at the

goal and follow the steepest descent of the

potential function

Roadmap

Potential field

Cell decomp.

Page 68

–The goal location generates an attractive

potential – pulling the robot towards the

goal

– The obstacles generate a repulsive

potential – pushing the robot far away from

the obstacles

– The negative gradient of the total

potential is treated as an artificial force

applied to the robot

Potential fieldRoadmap

Potential field

Cell decomp.

Page 69

The sum of the forces control of the robot

Potential fieldRoadmap

Potential field

Cell decomp.

Page 70

Potential fieldRoadmap

Potential field

Cell decomp.

Page 71

Pros

 Spatial paths are not preplanned and

can be generated in real time

 Planning and controlling are merged into

one function

Cons

Trapped in local minima in the potential

field

 Because of this limitation, commonly

used for local path planning

Potential field
Roadmap

Potential field

Cell decomp.

Page 72

 Collision detection algorithms determine

whether a configuration lies in Cfree

 Motion planning algorithms require that an

entire path maps into Cfree

 The interface between the planner and collision

detection usually involves validation of a path

segment

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM

Page 73

 For a Path τs : [0, 1] → Cfree a sampling for the

interval [0, 1] is calculated

 The collision checker is called only on the

samples

Problem:

 How a Resolution can be found?

 How to guarantee that the places where the

path is not sampled are collision-free?

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM

Page 74

 A fixed ∆q > 0 is often chosen as the C-space

step size

 Points t1, t2 ∈ [0,1] are chosen close enough

together to ensure that ρ(τ(t1), τ(t2)) ≤ ∆q , ρ is a

metric on C

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM

Page 75

 If ∆q is too small, considerable time is wasted

on collision checking (1)

 If ∆q is too large, then there is a chance that

the robot could jump through a thin obstacle (2)

Checking Path Segment

(1)

(2)

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 76

 Suppose that for a configuration q(xt,yt,O) the

collision detection algorithm indicates that

A(q) is at least d units away from collision

 Suppose that the next candidate configuration

to be checked along τ is q’(x’t,y’t,O’)

 If no point on A travels more than distance d

when moving from q to q’ along τ , then q’

and all configurations between q and q’ must

be collision-free

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM

Page 77

The bounds d can generally be used to set a

step size ∆q for collision checking that

guarantees the intermediate points lie in Cfree

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM

Page 78

Most sample-based planning algorithms

consisting of single-query model, witch means

(qI , qG) is given only once per robot and obstacle

set, following this template:

1. Initialization

2. Vertex Selection Method (VSM)

3. Local Planning Method (LPM)

4. Insert an Edge in the Graph

5. Check for a Solution

6. Return to Step 2

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM

Page 79

1. Initialization:

Let G(V,E) represent an undirected search

graph, for which

V contains at least one vertex and E

contains no edges. Typically, V contains

qI , qG, or both. In general, other points in

Cfree may be included

2. Vertex Selection Method:

Choose a vertex qcur ∈ V for expansion

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM

Page 80

3. Local Planning Method (LPM):

For some qnew ∈ Cfree that may or may

not be represented by a vertex in V

attempt to construct a path τs : [0, 1] →

Cfree such that τ(0) = qcur and τ(1) =

qnew. Using the methods of Slides

τs must be checked to ensure that it

does not cause a collision. If this

step fails to produce a collision-free path

segment, then go to step 2.

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM

Page 81

4. Insert an Edge in the Graph

Insert τs into E, as an edge from qcur to

qnew . If qnew is not already in V, then it is

inserted

5. Check for a Solution

Determine whether G encodes a solution

path. As in the discrete case, if there is a

single search tree, then this is trivial;

otherwise, it can become complicated and

expensive

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM

Page 82

6. Return to Step 2:

Iterate unless a solution has been

found or some termination condition

is satisfied, in which case the

algorithm reports failure

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM

Page 83

There are several classes of algorithms based on

the number of search trees:

 Unidirectional (single-tree) methods

 Bidirectional Methods

 Multi-directional (more than two trees)

methods

Sampling based Planning Algorithm: Path Segment

SBPA

Incremental Search

RRT

PRM

Page 84

 Is a single-tree Method

 A* traverses the graph and follows the path

with the lowest cost

 Keeps a sorted priority queue of alternate path

segments along the way

 If by adding a new Point, a segment of the path

get a higher cost than another stored path

segment, the lower-cost path segment will be

followed

 The process continues until the goal is reached

Sampling based Planning Algorithm:

Unidirectional (single-tree) methods: A* (A-Star)

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 85

 The start position is (1, 1)

 The successive node (1, 2)

 There is no ambiguity, until the Robot

reaches node (2, 4)

 The successor node can be determined by

evaluating the cost to the target from both the

nodes (3,4) and (3,3)

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 86

 Bidirectional Methods: By a Bug-Trap or a

challenging region problem, we better use a

bidirectional approach

Sampling based Planning Algorithm: Path Segment

SBPA

Incremental Search

RRT

PRM

Page 87

 Multi-directional Methods: For a double bug-

trap, multi-directional search may be needed

Sampling based Planning Algorithm: Path Segment

SBPA

Incremental Search

RRT

PRM

Page 88

 The idea is to incrementally construct a search

tree that gradually improves the resolution but

does not need to explicitly set any resolution

parameters

 Instead of one long path, there are shorter

paths that are organized into a tree

 If the sequence of samples is random, the

resulting tree is called a rapidly exploring random

tree (RRT), which indicate that a dense covering

of the space is obtained

Rapidly Exploring Dense TreesPath Segment

SBPA

Incremental Search

RRT

PRM

Page 89

Basic RRT Algorithm:

1. Initially, start with the initial configuration as

root of tree

2.Pick a random state in the configuration space

3. Find the closest node in the tree

4. Extend that node toward the state if possible

5. Goto (2)

Rapidly Exploring Dense TreesPath Segment

SBPA

Incremental Search

RRT

PRM

90

Basic RRT Algorithm:

Rapidly Exploring Dense TreesPath Segment

SBPA

Incremental Search

RRT

PRM

Page 91

Rapidly Exploring Dense Trees

 The algorithm for constructing RDTs

(which includes RRTs)

 It requires the availability of a dense

sequence, α, and iteratively connects from

α(i) to the nearest point among all those

reached by G

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 92

Rapidly Exploring Dense Trees

If the nearest point in S lies in an edge

(α), then the edge is split into

two, and a new vertex is inserted into G

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 93

Rapidly Exploring Dense Trees

 Several main branches are first constructed

as it rapidly reaches the far corners of the

space

 More and more area is filled in by smaller

branches

 The tree gradually improves the resolution

as the iterations continue

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 94

Rapidly Exploring Dense Trees

 This behavior turns out to be ideal for

sampling-based motion planning

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 95

Rapidly Exploring Dense Trees
 The RRT is dense in the limit (with

probability one), which means that

it gets arbitrarily to any point in the

space

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 96

Probabilistic roadmaps (PRMs)

Separate planning into two stages:

• Learning Phase

– find random sample of free configurations

(vertices)

– attempt to connect pairs of nearby

vertices with a local planner

– if a valid plan is found, add an edge to

the graph

•

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 97

Probabilistic roadmaps (PRMs)

Learning Phase:

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 98

Probabilistic roadmaps (PRMs)

Separate planning into two stages:

• Query Phase

– find local connections to graph from initial

and goal positions

– search over roadmap graph using A* to

find a plan

Path Segment

SBPA

Incremental Search

RRT

PRM

Page 99

Probabilistic roadmaps (PRMs)

Query phase:

Path Segment

SBPA

Incremental Search

RRT

PRM

 Introduction

 Motion Planning

 Configuration Space

 Sampling-Based Motion Planning

 Comparaison of related Algorithms

Page 101

 “Complete”: If a plan exists, the path

and the trajectory are found

 Optimal: The plan returned is optimal in

reference to some metric

 Efficient World Updates: Can change

world without recomputing everything

 Efficient Query Updates: Can change

query without replanning from scratch

 Good dof Scalability: Scales well with

increasing C-space dimensions

Page 102

Approach Complete Optimal

Efficient

World

Updates

Efficient

Query

Updates

Good DOF

Scalability

A* yes grid no no no

Visuality yes yes no no no

Voronoi yes no yes yes no

Potential
Field yes no no no yes

RRT yes no semi semi yes

PRM yes graph no yes yes

Page 103

[1] D. Aarno, D. Kragic, and H. I. Christensen. Artificial

potential biased probabilistic roadmap method. In

Proceedings IEEE International Conference on Robotics &

Automation, 2004

[2] R. Abgrall. Numerical discretization of the first-order

Hamilton-Jacobi equation on triangular meshes.

Communications on Pure and Applied Mathematics,

49(12):1339–1373, December 1996.

[3] R. Abraham and J. Marsden. Foundations of Mechanics.

Addison-Wesley, Reading,MA, 2002.

[4] PLANNING ALGORITHMS, Steven M. LaValle

University of Illinois / Available for downloading at

http://planning.cs.uiuc.edu/

[5] Wikipedia

http://planning.cs.uiuc.edu/

