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 Robot motion planning 
encompasses several different 
disciplines

 Most notably robotics, computer 
science, control theory and 
mathematics

 This volume presents an 
interdisciplinary account of recent 
developments in the field 
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 Most important in robotics is to 
have algorithms that convert high-
level specifications of tasks from 
humans into low-level descriptions of 
how to move

 Motion planning and trajectory 
planning are often used for these 
kinds of problems
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Motion Planning

 Given a robot, find a sequence of 
valid configurations that moves the 
robot from the source to destination
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Piano Mover’s Motion Planning

 Assume: A computer-aided design 
(CAD) model of a house and a piano 
as input to an algorithm

 Required: Move the piano from one 
room to another in the house without
hitting anything
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Robot motion planning usually 
ignores dynamics and other 
differential constraints and focuses 
primarily on the translations and
rotations required to move the piano

Piano Mover’s Motion Planning
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Trajectory Planning

 By Trajectory Planning we are using 
robot coordinates because it’s easier, 
but we loose  visualization
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 Taking the solution from a robot 
motion planning algorithm

 Determining how to move along the 
solution in a way that respects the 
mechanical limitations of the robot

Piano Mover’s Trajectory planning
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 We consider planning as a branch of 
algorithms

 The focus here includes numerous 
concepts that are not necessarily 
algorithmic but aid in modeling, solving,
and analyzing planning problems
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Planning involves:

 State Space: captures all possible 
situations that could arise (Position, 
Orientation)

 Time: Sequence of decisions that 
must be applied over time

 Action: Manipulate the state and it 
must be specified how the state 

changes when action are applied
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 Initial and goal states: Starting in 
some initial state and trying to arrive at 
a specified goal state

 A criterion: Encodes the desired 
outcome of a plan in terms of the state
and actions that are executed and 
consist of two types, Feasibility and 
Optimality

 A plan: imposes a specific strategy or   
behavior on a decision maker
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Compute motion strategies:
 Geometric paths 
 Time-parameterized trajectories
 Sequence of sensor-based motion 
commands

Achieve high-level goals:
 Go to the door and do not collide 
with obstacles
 Build a map of the hallway
 Find and track the target
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 Work Space: Environment in which 
robot operates
 Obstacles: Already occupied spaces of 
the world.
 Free Space: Unoccupied space of the 
world
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Continuous representation

Discretization

Graph searching
(blind, best-first, A*)



Geometric modeling consist on two 
alternatives: 

 A Boundary Representation
 A Solid Representation
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Let’s define the world W for which there 
are two possible choices:

1) a 2D world, in which W = R2

2) a 3D world, in which W = R3
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The world W contains two kinds of 

entities:

 Obstacles: Portions of the world 

that are “permanently” occupied

 Robots: Bodies that are modeled 

geometrically and are controllable 

via a motion plan

Both are considered as Subset of W
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 The obstacle region O denote the

set of all points in W that lie in one or

more obstacles: Hence, O ⊆ W

 O is a combination of Boolean 

primitives H

 Each primitives H is easy to 

represent and manipulate 
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 Let’s consider obstacle O as 

Convex Polygons

Case of Non convex is returned to the 

convex representation

Convex Non Convex
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 Primitives H are presented by a 

set of two points (x,y)

 Each two points describe a line

ax + by + c = 0

f(x,y) = ax + by + c is positive from 

one side and negative from the 

other side
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 Obstacle is defined by a set of 

vertices (corner) or lines (edges) 

described by pairs of two points
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Example:

f1(x,y) = x-2

f2(x,y) = y-2

f3(x,y) = 1-x

f4(x,y) = 1-y

i = 1.. 4

m = 1.. 4
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 In 3D, the representation with

primitives is similar to 2D 

 Instead of Polygons, we use

Polyhedral

 The lines became planes
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Semi-Algebraic Models:

 f can be any polynomial

 For example let’s take:
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Other representation Models:

 3D triangles: Represent complex 

geometric shapes as a union of 

triangles

 Nonuniform rational B-splines: 

find an Interpolation over a set of

points
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Other representation Models:

 3D triangles:

 Nonuniform rational B-splines:
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Other representation Models:

 Bitmaps: Discretize a bounded

portion of the world into rectangular

cells

W
O
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Translation:

 A is the set of Robot points

 h is the transformation applied 

to each point of A

 Transformation is defined as 

below:
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Translation: Example

Appling h to the Representation H of a

disc:

Xt

Yt

=
>
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Rotation:

Given the following Rotation Matrix:

the set of Robot points get rotated 

to:
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A kinematic chain

 Is the assembly of several 

kinematic pairs connecting rigid 

body segments
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2D Kinematic Chain:

In the case of two unattached rigid 

bodies A1 and A2, there is 6 degrees of 

Freedom, two Rotations and four

Translations:

By attaching bodies, degrees of 

freedom are removed
Page 36



2D Kinematic Chain: Attaching bodies

 The place at which the links are 

attached is called a joint

 Two types of 2D joints: Prismatic 

and Revolute
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2D Kinematic Chain: Attaching bodies

 Revolute Joint: allows one link to 

rotate with respect to the other

 Prismatic Joint: allows one link 

to translate with respect to the 

other Page 38



 Introduction

 Motion Planning

 Configuration Space

 Sampling-Based Motion Planning

 Comparaison of related Algorithms

Page 39



Page 40

A vector q including all degree of 

freedom is called a configuration
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Configuration space (Cspace)
= set of all configurations

Free space (Cfree)
= set of allowed (feasible) 

configurations 
Obstacle space (Cobstacle)

= set of disallowed configurations

Cspace = Cfree + Cobstacle
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Path of an object =
= curve in the configuration space

represented either by:
Mathematical expression, or
Sequence of points

Trajectory
= Path + assignment of time to 

points along the path
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Is the set of legal configurations of the 

robot

It also defines the topology of continuous 

motion

For rigid-object robots (no joints) there 

exists:

 a transformation to the robot and         

obstacles that turns the robot into a 

single  point. 
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The C-Space Transform

 Turn Robot to a Point:

Make the Obstacle bigger by applying the 

Minkowski addition
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The C-Space Transform

 1. Robot motion

planning Problem

2. Robot motion

planning Problem

after C-Space 

Transformation
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The motion planning problem consists of 

the following:

Input

 geometric descriptions of a robot and its 

obstacles

 initial and goal configurations

Output

 a path from start to

finish (or the 

Recognition that 

none exists
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Classic Path Planning Approaches

 Roadmap

 Cell decomposition

 Potential field
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Roadmap

Represent the connectivity of the free 

space by a  network of 1-D curves, as in 

Visibility or Voronoi Diagrams

Roadmap

Potential field

Cell decomp.
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Visibility Diagram

Construct all of the line segments that 

connect vertices to one another

From Cfree, a graph is defined

Converts the problem into graph search

Roadmap

Potential field

Cell decomp.
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Visibility Diagram

We start by drawing lines of sight from the 

start and goal to all “visible” vertices and 

corners of the Configuration Space

start

goal

Roadmap

Potential field

Cell decomp.
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Visibility Diagram

Than draw the lines of sight from every 

vertex of every obstacle like before

start

goal

Roadmap

Potential field

Cell decomp.
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Visibility Diagram

After connecting all vertices of our 

obstacles, we obtain following graph

start

goal

start

goal

Roadmap

Potential field

Cell decomp.
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Visibility Diagram

+ Through the founded Graph we could find 

the most shorter path

- But the trajectory is to close to the obstacles

start

goal

start

goal

Roadmap

Potential field

Cell decomp.
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Voronoi Diagram

Set of points equidistant from the closest 

two or more obstacle boundaries

Maximizing the clearance between the 

points and obstacles

Roadmap

Potential field

Cell decomp.
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Voronoi Diagram

 Compute the Voronoi Diagram of C-

space

Roadmap

Potential field

Cell decomp.
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Voronoi Diagram

 Compute shortest straightline path from

start and Goal to closest point on Voronoi 

Diagram

Roadmap

Potential field

Cell decomp.
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Voronoi Diagram

 Compute shortest path from start to goal

along Voronoi Diagram

Roadmap

Potential field

Cell decomp.
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Cell decomposition

Decompose the free space into simple cells 

and represent the connectivity of the free 

space by the adjacency graph of these 

cells

Roadmap

Potential field

Cell decomp.
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Cell decomposition: 

Exact decomposition (Trapezoidal)

 Decompose the free space with vertical 

lines through the vertices without 

intersecting with the forbidden space

Roadmap

Potential field

Cell decomp.
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Cell decomposition: 

Exact decomposition (Trapezoidal)

 Add to the center of each segment and 

trapezoid a graph node

Roadmap

Potential field

Cell decomp.
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Cell decomposition: 

Exact decomposition (Trapezoidal)

 Find the shortest path through the 

obtained graph with a graph search 

algorithm

Roadmap

Potential field

Cell decomp.
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Cell decomposition: 

Approximate decomposition

 One of the most convenient way to make 

sampling-based planning algorithms is to 

define a grid over C and conduct a discrete 

search algorithm

 Neighborhoods: For each grid point q  
we need to define the set of nearby grid 

points for which an edge may be 

constructed

Roadmap

Potential field

Cell decomp.
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Cell decomposition: 

Approximate decomposition

 Once the grid and 

neighborhoods 

have been defined, 

a discrete planning 

problem is obtained

Roadmap

Potential field

Cell decomp.
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Cell decomposition: 

Approximate decomposition

 Decompose the C-Space with a start 

resolution to cell grid

 Each cell that intersect with obstacles is 

forbidden

 Is there some path existing?

Roadmap

Potential field

Cell decomp.
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Cell decomposition: 

Approximate decomposition

 If no Path is existing than refine the 

resolution until a solution is found

Roadmap

Potential field

Cell decomp.
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Potential field

Define a potential function over the free 

space that has a global minimum at the 

goal and follow the steepest descent of the 

potential function

Roadmap

Potential field

Cell decomp.
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–The goal location generates an attractive 

potential – pulling the robot towards the 

goal

– The obstacles generate a repulsive 

potential – pushing the robot far away from 

the obstacles

– The negative gradient of the total 

potential is treated as an artificial force

applied to the robot

Potential fieldRoadmap

Potential field

Cell decomp.
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The sum of the forces control of the robot 

Potential fieldRoadmap

Potential field

Cell decomp.
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Potential fieldRoadmap

Potential field

Cell decomp.
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Pros

 Spatial paths are not preplanned and  

can be generated in real time

 Planning and controlling are merged into 

one function

Cons

Trapped in local minima in the potential 

field

 Because of this limitation, commonly 

used for local path planning

Potential field
Roadmap

Potential field

Cell decomp.
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 Collision detection algorithms determine    

whether a configuration lies in Cfree

 Motion planning algorithms require that an 

entire path maps into Cfree

 The interface between the planner and collision 

detection usually involves validation of a path 

segment

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM
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 For a Path τs : [0, 1] → Cfree a sampling for the 

interval [0, 1] is calculated

 The collision checker is called only on the 

samples

Problem: 

 How a Resolution can be found?

 How to guarantee that the places where the 

path is not sampled are collision-free?

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM
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 A fixed ∆q > 0 is often chosen as the C-space 

step size

 Points t1, t2 ∈ [0,1] are chosen close enough 

together to ensure that ρ(τ(t1), τ(t2)) ≤ ∆q , ρ is a 

metric on C

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM
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 If ∆q is too small, considerable time is wasted 

on collision checking (1)

 If ∆q is too large, then there is a chance that 

the robot could jump through a thin obstacle (2)

Checking Path Segment

(1)

(2)

Path Segment

SBPA

Incremental Search

RRT

PRM
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 Suppose that for a configuration q(xt,yt,O) the 

collision detection algorithm indicates that 

A(q) is at least d units away from collision

 Suppose that the next candidate configuration

to be checked along τ is q’(x’t,y’t,O’)

 If no point on A travels more than distance d 

when moving from q to q’ along τ , then q’

and all configurations between q and q’ must 

be collision-free

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM
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The bounds d can generally be used to set a 

step size ∆q for collision checking that 

guarantees the intermediate points lie in Cfree

Checking Path SegmentPath Segment

SBPA

Incremental Search

RRT

PRM
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Most sample-based planning algorithms 

consisting of single-query model, witch means 

(qI , qG) is given only once per robot and obstacle 

set, following this template:

1. Initialization

2. Vertex Selection Method (VSM)

3. Local Planning Method (LPM)

4. Insert an Edge in the Graph

5. Check for a Solution

6. Return to Step 2

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM
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1. Initialization:

Let G(V,E) represent an undirected search 

graph, for which

V contains at least one vertex and E 

contains no edges. Typically, V contains

qI , qG, or both. In general, other points in 

Cfree may be included

2. Vertex Selection Method:

Choose a vertex qcur ∈ V for expansion

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM
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3.   Local Planning Method (LPM):

For some qnew ∈ Cfree that may or may 

not be represented by a vertex in V

attempt to construct a path τs : [0, 1] →

Cfree such that τ(0) = qcur and τ(1) = 

qnew. Using the methods of Slides

τs must be checked to ensure that it 

does not cause a collision. If this

step fails to produce a collision-free path 

segment, then go to step 2.

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM
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4. Insert an Edge in the Graph

Insert τs into E, as an edge from qcur to 

qnew . If qnew is not already in V, then it is 

inserted

5. Check for a Solution

Determine whether G encodes a solution 

path. As in the discrete case, if there is a 

single search tree, then this is trivial; 

otherwise, it can become complicated and 

expensive

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM
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6.  Return to Step 2: 

Iterate unless a solution has been 

found or some termination condition 

is satisfied, in which case the 

algorithm reports failure

Incremental Sampling and SearchingPath Segment

SBPA

Incremental Search

RRT

PRM
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There are several classes of algorithms based on 

the number of search trees:

 Unidirectional (single-tree) methods

 Bidirectional Methods

 Multi-directional (more than two trees) 

methods

Sampling based Planning Algorithm: Path Segment

SBPA

Incremental Search

RRT

PRM
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 Is a single-tree Method

 A* traverses the graph and follows the path 

with the lowest cost

 Keeps a sorted priority queue of alternate path 

segments along the way

 If by adding a new Point, a segment of the path 

get a higher cost than another stored path 

segment, the lower-cost path segment will be 

followed

 The process continues until the goal is reached

Sampling based Planning Algorithm:

Unidirectional (single-tree) methods: A* (A-Star)

Path Segment

SBPA

Incremental Search

RRT

PRM
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 The start position is (1, 1) 

 The successive node (1, 2)

 There is no ambiguity, until the Robot      

reaches node (2, 4) 

 The successor node can be determined by 

evaluating the cost to the target from both the 

nodes (3,4) and (3,3)

Path Segment

SBPA

Incremental Search

RRT

PRM
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 Bidirectional Methods: By a Bug-Trap or a 

challenging region problem, we better use a 

bidirectional approach

Sampling based Planning Algorithm: Path Segment

SBPA

Incremental Search

RRT

PRM
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 Multi-directional Methods: For a double bug-

trap, multi-directional search may be needed

Sampling based Planning Algorithm: Path Segment

SBPA

Incremental Search

RRT

PRM
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 The idea is to incrementally construct a search 

tree that gradually improves the resolution but 

does not need to explicitly set any resolution 

parameters

 Instead of one long path, there are shorter 

paths that are organized into a tree

 If the sequence of samples is random, the 

resulting tree is called a rapidly exploring random 

tree (RRT), which indicate that a dense covering 

of the space is obtained

Rapidly Exploring Dense TreesPath Segment

SBPA

Incremental Search

RRT

PRM
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Basic RRT Algorithm:

1. Initially, start with the initial configuration as 

root of tree

2.Pick a random state in the configuration space

3. Find the closest node in the tree

4. Extend that node toward the state if possible

5. Goto (2)

Rapidly Exploring Dense TreesPath Segment

SBPA

Incremental Search

RRT

PRM
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Basic RRT Algorithm:

Rapidly Exploring Dense TreesPath Segment

SBPA

Incremental Search

RRT

PRM
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Rapidly Exploring Dense Trees

 The algorithm for constructing RDTs 

(which includes RRTs)

 It requires the availability of a dense 

sequence, α, and iteratively connects from 

α(i) to the nearest point among all those 

reached by G

Path Segment

SBPA

Incremental Search

RRT

PRM
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Rapidly Exploring Dense Trees

If the nearest point in S lies in an edge 

(α), then the edge is split into

two, and a new vertex is inserted into G

Path Segment

SBPA

Incremental Search

RRT

PRM
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Rapidly Exploring Dense Trees

 Several main branches are first constructed 

as it rapidly reaches the far corners of the 

space

 More and more area is filled in by smaller 

branches

 The tree gradually improves the resolution 

as the iterations continue 

Path Segment

SBPA

Incremental Search

RRT

PRM
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Rapidly Exploring Dense Trees

 This behavior turns out to be ideal for 

sampling-based motion planning

Path Segment

SBPA

Incremental Search

RRT

PRM
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Rapidly Exploring Dense Trees
 The RRT is dense in the limit (with 

probability one), which means that

it gets arbitrarily to any point in the 

space

Path Segment

SBPA

Incremental Search

RRT

PRM



Page 96

Probabilistic roadmaps (PRMs)

Separate planning into two stages:

• Learning Phase

– find random sample of free configurations 

(vertices)

– attempt to connect pairs of nearby 

vertices with a local planner

– if a valid plan is found, add an edge to     

the graph

•

Path Segment

SBPA

Incremental Search

RRT

PRM
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Probabilistic roadmaps (PRMs)

Learning Phase:

Path Segment

SBPA

Incremental Search

RRT

PRM
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Probabilistic roadmaps (PRMs)

Separate planning into two stages:

• Query Phase

– find local connections to graph from initial 

and goal positions

– search over roadmap graph using A* to 

find a plan

Path Segment

SBPA

Incremental Search

RRT

PRM
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Probabilistic roadmaps (PRMs)

Query phase:

Path Segment

SBPA

Incremental Search

RRT

PRM
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 “Complete”: If a plan exists, the path 

and the trajectory are found

 Optimal: The plan returned is optimal in 

reference to some metric

 Efficient World Updates: Can change 

world without recomputing everything

 Efficient Query Updates: Can change 

query without replanning from scratch

 Good dof Scalability: Scales well with 

increasing C-space dimensions
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Approach Complete Optimal

Efficient

World

Updates

Efficient 

Query

Updates

Good DOF

Scalability

A* yes grid no no no

Visuality yes yes no no no

Voronoi yes no yes yes no

Potential
Field yes no no no yes

RRT yes no semi semi yes

PRM yes graph no yes yes
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