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Introduction

• Voronoi Diagram with point sites

• Divide-and-conquer algorithm

• Generalized Voronoi Diagram

• Medial Axis and Medial Axis Transformation

• What do we want to do here?
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Voronoi Diagram

• Definition
– In mathematics, a Voronoi diagram is a special kind of decomposition of 

a metric space determined by distances to a specified discrete set of 

objects in the space, e.g., by a discrete set of points.
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Voronoi Diagram

• Site 

• Edge
– Set of points each of those has eqaul distance to the sites which regions 

are using this edge.

• Vertex
– Intersecting points of edges

• Region
– Open area inside bounding edges

• homomephic to open disk

• Bounding cricle

• Properties
– Equidistance

– Closeness

– Bijection (site, region)
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Divide-and-conquer algorithm

• Divide and conquer algorithm
– The original problem is recursively divided into several simpler sub-

problems of roughly equal size, and the solution of the original problem 

obtained by merging the solutions of the sub-problems.
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Divide-and-conquer algorithm

• Example
– http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voro

noi/DivConqVor/divConqVor.htm
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Generalized Voronoi Diagram

• When point sites becomes shapes in 2D

– Points

– Arcs

– Closed planar areas

• Differences

– Sites

– Edges

– Verticies

– Regions
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Medial Axis (MA) and Transformation (MAT)

• Medial Axis (MA)

– The medial axis of an object is the set of all points having more 

than one closest point on the object's boundary. 
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Medial Axis (MA) and Transformation (MAT)

• Medial Axis Transformation (MAT)
– The medial axis together with the associated radius function of the 

maximally inscribed discs 

– The medial axis transform is a complete shape descriptor (see also 

shape analysis), meaning that it can be used to reconstruct the shape of 

the original domain.
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What do we want to do here?

• Generate generalized voronoi diagram for 2D sites in 

plane
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Generalized Voronoi Diagrams

• Definition

– The voronoi diagram for general sites, V(S), of set of sites S is edge 

graph, Gs, which is the set of all points having more than one closest 

point on the union of all sites.

• Sites

– Pairwise disjoint, closed topological disks of dimension two, one or zero 

in Euclidean plane R2.

– Dimension two: object homeomorphic to a disk

– Dimension one: object homeomorphic to a line segment

– Dimension zero: point

• Distance of a point x to a site s ∈ S    (δis Euclidean distance func.)
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Generalized Voronoi Diagram

• Dividing the Voronoi Diagram

• Augmented domains
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Dividing the Voronoi Diagram

• Observation
1. The region of V(S) bijectively correspond to the sites in S. 

2. Each site is contained in its region.  (bijection)

3. Regions are simply connected. 

Proof: Assume that x is a point in region R of V(S), To x there exists a 

unique closest point y, on the union of the sites in S (If x is not on edge 

of Gs).

Sites are pairwise disjoint, so there is a unique site s ∈∈∈∈ SSSS with y y y y ∈∈∈∈

ssss. Site ssss is the same for all x x x x ∈∈∈∈ RRRR, since d (x, s)d (x, s)d (x, s)d (x, s) is a continuous 

function of xxxx. This maps regions to sites.

With xxxx also the closed line segment xyxyxyxy is part of RRRR. This imples 

that RRRR is simply connected.

y y y y ∈∈∈∈ RRRR imples s s s s ⊂⊂⊂⊂ RRRR and maps sites to regions.
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Dividing the Voronoi Diagram

• Bounds
– Surrounding circle ΓΓΓΓ : introduce surrounding circle ΓΓΓΓ into sites S

– We choose Γ s.t. each vertex of V(S \ ΓΓΓΓ ) is also a vertex of V(S)

– All regions of V(S) are bounded now, except R (ΓΓΓΓ).
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Dividing the Voronoi Diagram

• Break the edge graph Gs
– Let p(s) be a point on s with smallest ordinate (y-coordinate), and q(s)

is the point on Gs vertically below p(s).

– Since Region for S\ Γ is bounded, so q(s) always exists.

– We assume that q(s) is not an endpoint of any edge of Gs. If it is the not 

the case, we rotate coordinate system slightly.

– Wd define Ts, as follows (remove all q(s) from Gs): 
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Dividing the Voronoi Diagram

• Lemma 1. The graph Ts is a tree

proof (sketch):

every region is closed => q (s) always exists (acyclic)

bijection of site and region => every cycle of region is only one point missing, 

that is q(s).

Assume adjacent points of q(s) are ql(s) and qr(s) => we can always travel 

from ql(s) to qr(s) along the remained region cycle

q(s) is not vertex of  V(S) => we could travel from ql(s) or qr(s) to any point 

of V(S)  (reachability).

So, acyclic and reachability => Ts is a tree.
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Augmented Domains

• We interpret Ts as medial axis of a generalized planar 

domain. 

• To construct V(S) is identical to construct medial axis 

and using the medial axis algorithm.
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Augmented Domains

• Shape: two-manifold B, which contains objects in plane or sphere 

surface of ball.

• Inscribed disk for B: disk lies entirely in B.

• Medial axis transformation (MAT(B)): set of all maximal inscribed 

disks.

• Medial axis (MA(B)): set of centers of maximal inscribed disks.

• We interpret V(S) as MA of a planar shape: simply take surrounding 

circle ΓΓΓΓ as part of shape boundray, and consider each remained 

site s ∈ S as a hole. 

• It is like that we have a disk B0 in plane surrounded by ΓΓΓΓ, and make 

some holes on it, which are sites s ∈ S . The shape is the remained 

disk after making holes. So we define:
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Augmented Domains

• We disconnect shape B at appropriate positions, s.t. 

medial axis of resulting domain corresponds to the tree 

decomposition Ts of V(S).

• Introduce augmented domain and construct it recursively.
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Augmented Domains

• Augmented domain: set A together with a projection ππππA : 

A -> R2. 

• Initially, A is original shape B, and ππππA is identical to A.

• Consider a maximal inscribed disk D of A, which touches 

the boundray ∂A in exactly two points u and v. Namely, 

we split boundray of D into uv and vu, two circular arcs.

• A’ is new augmented shape (lifting D to D1 and D2):
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Augmented Domains
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Augmented Domains

• Line segment ((x, i) , (y, j)) in A is contained in A’ if one 
of the following conditions is met:
– i = j and line segment xy avoids ∂D;

– {i, j} = {0,1} and xy intersects the arc uv;

– {i, j} = {0, 2} and xy intersects the arc vu;

• The distance of two points (x, i), (y, j) in A’ is distance of ππππA(x) and 
ππππA(y) in R

2 if line segment is contained in A; the distance is ∞∞∞∞ if line 
segment is not contained in A.

• An open disk in A’ centered at (m, i) with radiu δδδδ is the set of all 
points in A’ whose distance to (m, i) is less than δδδδ. It is inscribed in 
A’ if its projection into R2 is again an open disk.

• Boundray of A’, ∂A’,  can be gotten by disconnecting the A’s 
boundray at the contact points u and v of the splitting disk D, and 
reconnecting it with the circular arcs uv and vu.
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Augmented Domains

si
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Augmented Domains

• We have made boundray directional and travesable.
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Augmented Domains

• Bijection relation between MAT(A)\ {D} and MAT(A’)\{D1, D2}.

• MA(A’) is the same as MA(A), only except the edge in MA(A) 

containing the center of D which is splitted into two disconnected 

edges which both have center of D.



17.07.2010 27

Augmented Domains

• We intend to draw edge graph Gs. And we do it like 
follows:
– Initial shape B is augmented with |S| - 1 maximal inscribed disks,

– The disks are centered at the points q(s) of Gs, q(s) was the 
vertical projection onto Gs of a point with smallest ordinate on
the site s.

• After these |S| - 1 augmentations, denote current domain 
as As.

• Lemma2. The tree Ts is the MA of the augmented 
domain As.
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Augmented Domains

• The boundray acturally determines the direction of our travel.

• It makes us to travel from one point on boundray and along the 

boundray, we can finally return to the same point.
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Algorithm for building 

generalized Voronoi Diagram

• Computing boundary of augmented domain As

• Computing medial axis of augmented domain As

• And the medial axis is Gs of V(S)

• Experiments
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Algorithm for building 

generalized Voronoi Diagram

• To construct the boundray of As is to find the maximal 

inscribed disks for all sites in S\Γ.

• To find the disks is to find the centers and redii of disks.
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Algorithm for building 

generalized Voronoi Diagram

• Recall that Di is horizontally tangent to si at a lowest 

point p(si) of si. 

• The center q(si) of Di lies on edge graph Gs of V(S).

• So, we derive our main algorithm as follows:
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Algorithm for building 

generalized Voronoi Diagram

• Using sweep-line algorithm. That is:

– Sweep across S from above to below with a horizontal line L.

– For site si != Γ, let xi be the abscissa (x-coordinate) of p(si) and 
define EL(i) = si ∩ L.

– We maintain, for si whose point p(si) has been sweept over, the 
site sj where EL(j) is closest to xi on L.

– The unique disk with north pole p(si) and touching (tangenting) sj
is computed, and minimal such disk for si so far, DL(i), is updated 
if necessary (if the new disk has smaller radiu).

– The abscissa xi is deactivated when DL(i) has been entirely 
sweept over by L. It is activated when L touching it.

– As long as L intersects with DL(i), xi is activated.
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Algorithm for building 

generalized Voronoi Diagram

• Show some example on blackboard.
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Algorithm for building 

generalized Voronoi Diagram

• Some observations:
– If L sweeps over lowest point of DL(i), that means by this time point, we 

have not found another DL’(i) to replace (update) DL(i). That is the 

referred sj of xi has not been replaced by another sj’ whose EL(j’) is more 

closer to xi than EL(j) of sj.

– If we update DL(i) to DL’(i), that means the radiu is smaller.

– The EL(i) may consist of more than one component. 

(show on blackboard)
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Algorithm for building 

generalized Voronoi Diagram

• Some observations:

– Why we should deactivate x1 when lowest point of 

DL(1) is sweept over?

• Assume for site s1, we have drawed DL(1) and L meets the 

lowest point of DL(1).

• The center of DL(1) is always on vertical line through p(s1). 

Continue sweeping L,  if we could have a DL’(1) when x1 is 

closer to EL(s3) rather than EL(s2) which is last closest EL to x1.

• This disk should has larger radiu to DL(s1). Since L is 

continuing sweeping and center of disk is on verticle line 

passing x1.

• Here, this new disk intersects with s2.
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Algorithm for building 

generalized Voronoi Diagram

• Lemma3.  After completion of sweep, DL(i) = Di holds for 
each si

• To keep small number of neighbor pairs (xi, sj) on L 
processed during the plane sweep, we only consider 
pairs where no other activated abscissa xm lies between 
si and EL(j).

• The construction is of complexity O(nlogn).
– We have n sites

– For each sites we use logn to check/ update the STATUS tree.
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Computing medial axis 

of augmented domain

• Observation:

– As has a connected boundray and we can travel from a point p 

on As, along As and back to p.

– Di is maximal inscribed disk which separate the domain into 

subdomains.

– If we want to find MA (As), we can find MA(sub-As) and weave 

them together.

– We use divide-and-conquer algorithm to compute MA(As).

– The domain and its MA tree are split recursively until directly 

solvable base cases remain.
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Computing medial axis 

of augmented domain

• Divide and conquer:

– Divide step calculates a dividing disk and checks whether the 

induced decomposition is progressive. i.e. whether the resulting

subdomains are combinatorially smaller (containing less arcs) 

the domain itself, Until we meet the base cases.

– When we meet base cases, we use precomputed MA arcs as the 

output MA of base cases (base cases will be introduced soon).

– Conquer step concatenates the already computed medial axis 

for the subdomains, as two ore more subdomain shares the 

same dividing circle certer.
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Computing medial axis 

of augmented domain

• Layers of dividing disk

– Suppose we have a domain A, and it has a dividing disk CD.

– The number of layers of disk is the number of tangent point of CD

with A.
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Computing medial axis 

of augmented domain

• Base cases：

– For C1 continunity boundray of sites, we have 4 types of base 

cases. 
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Computing medial axis 

of augmented domain

• Base cases：

– For C0 continunity boundray of sites, we have 9 types of base 

cases. 



17.07.2010 42

Computing medial axis 

of augmented domain

• Base cases：

– The relation of base cases between C0 type and C1 type is as 

follows:
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Computing medial axis 

of augmented domain

• Base cases：

– The relation of base cases between C0 type and C1 type is as 

follows:
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Computing medial axis 

of augmented domain

• Base cases：

– The relation of base cases between C0 type and C1 type is as 

follows:
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Computing medial axis 

of augmented domain

• Base cases：

– The relation of base cases between C0 type and C1 type is as 

follows:
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Computing medial axis 

of augmented domain

• How to compute split disk for As?
– What we know?

• ∂As is continuous and has direction. Traversal-enabled.

• ∂As consists of bound inscribed disks (artificial arcs) and site 
boundrays (site segments)

– What we do?
• For point p on ∂ As, we compute maximal inscribed disk D for 
As and tangent with ∂ As at p.

• Scan along ∂ As, when disk intersects with any other sites, its 
size shrinks. Do not change when intersects when artificial 
arcs.

• Artificial arcs are only used to link site segment in correct 
cyclic order. Do not play any geometric role.
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Computing medial axis 

of augmented domain

• How to compute split disk for As?
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Computing medial axis 

of augmented domain

• Complexity

– Assume we have n sites (n site segments).

– If each site spend us O(1).

– Then, computing disk takes O(n) time.
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Experiments:

• Site appoximation:

– We approximate the site boundarys as connected circular arcs.

• Biarc

– It is the concatenation of two arcs which meet with a common 

tangent at a joint J.

– Joint circle
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Experiments:

• Biarc

– Biarc types:

• Equal chord (EC): arcs of equal length.

• Parallel tangent (PT) : biarc makes the tangent at joint parallel to the line 
p0p1

• Intersection (IS) : biarc determines J by intersecting the joint circle with the 
given curve.

• Spiral (SP): biarc chooses one of the arcs as a segment of an osculating 
circle of the given curve

– Why biarc?

• It is for approximate boundray of sites

• It could makes the # of self-edge decrease.

• It is not hard to compute a disk that is tangent to two arcs. But may be hard 
to compute disk that is tangent to two arbitrary curves. 

• Comparing with polylines, biarc approximation largely decrease the amount 
of computation.
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Experiments:

• Approximation quality of biarcs:
– We measure it by Hausdorff distance which measures how far two 

subsets of a metric space are from each other.

– Assume the biarc length (probably average) is h, Hausdorff distance 

decreases when decreasing h.

– Taylor expansion of errors, ki is the i-th derivative of the curve’s 

curvature with respect to the arc length parameter at the point of 

intersest
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Experiments:

• Five complex sites bounded by n circular arcs (average 

value over 40 different inputs)

• Ratio n log2n = atomic-steps/ (nlog2n)

• Ratio n (log2n)
2 =  atomic-steps/ (n (log2n)

2 )
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Experiments:

• Uniform distribution of n point sites
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Experiments:

• Compare with CGAL

– Site is polygon and bounded by totally n line segments.
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Applications

• Motion planning

• Trimmed offsets
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Motion planning

• Bound circle (box) is the bound for region.

• Sites are the obstacles

• Want to find path from source to target points.

• Derive V(S) as path network

• For each base path section (path between two adjacent voronoi 
verticies), maintain minimal diamiter of inscribed disk. And measure 
it with traveler’s size when traveler start to consider to travel along
this sub path.  

• If source/ target is on MA, find path with measurement, if not, they 
should be in some region. 

• Just find point on region bound s’ / t’ and find path s’ to t’ with 
measurement. 

• Finally, if found, connect s with s’ and t with t’.
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Motion planning

• Self-edge
– Edge of Gs, points of it have equal distance to more than one points on 

same site.

– It leads to blind lane.

。

。
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Motion planning

• Self-edge

– Site approximation decreases the number of self-adges.
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Trimmed offsets

• Compute inner or outer offsets of a planar shape A.

• For inner offsets, take outer boundray of A as the 

surrounding curve ∂A the holes of A as sites.

• For outer offsets, compute inner offsets of complement 

of A.



17.07.2010 60

Trimmed offsets

• Offsets at distance δ is:

• D(x, δ)is the disk with center x and radiu δ
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Trimmed offsets

• Inner offsets for different values of δ
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Trimmed offsets

• Subshape of A. edge graph Gs consists of conic 
segments ei, each being the bisector of two arcs ai

1 and 
ai
2.

• For a point x on either arc, consider the segment which 
is in A and connects x with ei.

• Union of these line segments forms the subshape Ai ⊆

A associated with ei.

• Each circular region consisting of all line segments which 
connect the points of the arc with its center.



17.07.2010 63

Trimmed offsets

a2
1

a2
2

a2
1

a2
2

Circular region
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Trimmed offsets

• Monotonic of subshape Ai:

– The radii of the maximal disks of A with centers on ei have no 

inner extrema.

– Inner extrema rmin, rmax shown below:

• rmin : radiu of smallest disk centered on ei and tangent to ai
1, ai

2

• rmax : radiu of largest disk centered on ei and tangent to ai
1, ai

2.
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Trimmed offsets

• Offsets is done separetely for each monotonic 

subshapes

– δ < rmin, then the offsets of arcs at distance δ are fully contained 

in ∂A δ

– rmin < δ < rmax, the offset arcs are trimmed at their intersections.

– rmax < δ , this subshape will be entirely trimmed off.
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Trimmed offsets



Thank you!

Questions?

Comments?


