Straight Skeleton

Computational Geometry and Geometric Computing Seminar Lavinia Dinu

Supervisor: Eric Berberich

How to fit a roof to these walls?

[SSA] Walls and fitted roof

Outline

- Definitions and Basic Properties
- A Simple Algorithm
- Algorithm for Polygons
- Applications
 - Fold and Cut Problem
 - Roof Design

Definitions

Planar Straight Line Graph

- Embedding of a planar graph in the plane
- Edges mapped to straight line segments
- No self-intersections
- Figures connected components
- Terminals vertices of degree one
- Try it yourself: www.planarity.net

[Wiki] A planar straight line graph

Skeleton

- Partition of plane into regions
- Reflects the geometric shape of the graph
- Arcs and nodes
- Medial axis non-linear
 - Points that have more than one closest point on the boundary

[Wiki] Medial axis of a polygon

Straight Skeleton: Wavefronts

- Generate wavefronts
- Vertices move on angular bisectors
- Propagate wavefronts simultaneously

[SSG] Polygonal figures and initial wavefronts in red

Straight Skeleton: Events

- Edge event
 - Edge length decreases to zero

- Split event
 - Wavefront edge splits due to interference

Straight Skeleton: Definition

- Straight skeleton angular bisectors traced by wavefront vertices
- Arcs and nodes
- Events \leftrightarrow nodes
- Face area swept by an edge
- Region union of faces of a figure

Straight Skeleton: Example

[SAS] Blue wavefronts and red skeleton of a polygon

Straight Skeleton: Example

[SSG] Red straight skeleton of graph

Properties

- •
- Is a tree
- 2n + t 2 nodes, for *n* vertices and *t* terminals
- Restricting to the interior of a polygon with *n* vertices:
 - *n* connected faces
 - *n* 2 nodes
 - 2*n* 3 arcs
- Does not have a Voronoi interpretation the usual algorithms can not be applied

Basic Algorithm

Idea

- Keep triangulation of areas not reached by any wavefront
- Vertices of wavefronts \rightarrow vertices of triangulation
- Edge & split event \rightarrow collapsing triangle
- Spokes edges of triangulation
- Use priority queue of triangles
 - Sort by collapsing time

Initial triangulation

- Triangulating the vertices:
 - Initially 2n 2 triangles
 - Shared for wavefront vertices
- Triangulating the terminals
 - Duplicate into two vertices linked by edge
 - First keeps initial spokes
 - Second uses a new spoke that partitions the resulting quadrilateral
 - One new triangle is created
- 2n 2 + t triangles

Initial triangulation

Triangulation of the graph (up) and triangulation of the initial wavefronts (down) for two figures. Blue edges represent spokes, red edges wavefronts.

Flip Event

- Vertex sweeps across a spoke s
- Remove *s*
- Insert a new spoke to preserve triangulation
- Caused only by reflex vertices
- No new skeleton node created
- Number of triangles unchanged
- $O(n^3)$ such events

[SAS] Flip Event

Edge Event

- *v* merges with another vertex
- *e* is removed
- Creates a node of the skeleton
- Removes one triangle
- Reflex vertex merges with convex vertex

[SAS] Edge Event

Split Event

- *v* hits an edge *e*
- Create new edges *e*' and *e*''
- Remove *e*
- Duplicate *v*
- Assign the new edges to *v*
- Creates a node of the skeleton
- Removes one triangle
- Reflex vertex becomes two convex vertices

[SAS] Split Event

Complexity analysis

- Store at most 2n + t 2 triangles
- Reflex vertices disappear after a non-flip event
- $O(n^3)$ processed triangles
- Recompute the priority queue after non-flip events
 - At each event O(n) triangles are updated
- $O(n^3 \log n)$ time and O(n) space
- Typical case $O(n \log n)$

A Better Algorithm

Input

- Simple non-degenerate polygon
- Can have holes
- Interior polygon will have the opposite orientation

[SSI] Polygon with hole

Idea & Data Structures

- Simulate the progression of the wavefronts
- Use set of circular lists of active vertices SLAV
 - Each LAV loop of vertices of a wavefront
 - Each vertex
 - References to both neighbors
 - References to adjacent edges in the original polygon
 - Doubly connected circular list of active vertices
- Priority queue
 - events

Convex Polygons: Initialization

- Store all vertices in one LAV
- For each vertex
 - Add reference to the two incident edges
 - Compute the angle bisector
- Compute nearer intersection of bisector with adjacent ones
 - Add to priority queue
 - Sort by distance to the corresponding edge
 - Add reference to the corresponding vertices
 - Can be duplicities among the intersection points

Convex Polygons: Initialization

[SSI] Initialization

Convex Polygons – Loop Part 1

- Pop point *I* from the queue
 - Points to V_a and V_b
- Remove duplicities
 - If V_a and V_b processed then loop
- Process the edge event
 - Check if wavefront disappears events happens inside triangle
 - V_c is the predecessor of V_a and the successor of V_b
 - Output arcs $V_a I$, $V_b I$ and $V_c I$

Convex Polygons – Loop Part 2

- Process normal edge event
 - Output arcs $V_a I$ and $V_b I$
 - Mark V_a and V_b as processed
 - Create new node in the place of I
 - Update the data structures like the initialization
 - Insert into LAV
 - Link to edges
 - Compute bisector and intersections
 - Store nearer intersection
 - Can cause duplicates

Convex Polygons – Loop Part 3

[SSI] First Step

Non-convex Polygons

- Add event type attribute
 - Edge event or split event
- Reflex vertices can cause both types of events

[SSI] Reflex vertices causing edge event A and split event B

Determine split events

- Point *B* at a split event
 - Same distance to three straight lines
- For each reflex vertex V and line segment e_i
 - Compute a possible B_i
 - Test if contained in feasible area
 - Choose closest B_i for each V

[SSI] Split event and feasible area

Processing split events

- Output arc VI
- The LAV is split into two
- Duplicate V

[SSI] Updating the LAVs

Complexity Analysis

- Edge events
 - $O(n \log n)$ time
 - O(n) storage
- Split events
 - O(nm) time, m reflex vertices
 - For each reflex vertex, look at all other edges to find split event
 - O(n) storage
- Total O(nm) with O(n) storage

Applications

Applications

- Decomposition of concave polygons into convex regions
 - Preprocessing step for shape matching, Minkovski sum
- Interpolating polygonal curves
- Fold and cut problem
- Roof design
- Terrain reconstruction

Fold and Cut Problem

- Fold a piece of paper and cut along a line
- Any possible shape can be obtained
- Creases are:
 - The straight skeleton
 - Perpendicular lines to the given shape reflected at the skeleton
- [PR] Applet to generate the folds

Fold and Cut Problem

[FC] Fold Pattern for a figure

Roof Design: Hip Roof

- All facets have the same slope
- Algorithm:
 - Construct straight skeleton
 - Determine distance of each vertex from supporting edge
 - Determine roof planes
 - Raise vertices accordingly
- Can be adapted for different slopes
 - Change propagation speed of wavefronts

Roof Design: Hip Roof

[AGF] Steps for creating a hip roof

Roof Design: Gable Roof

- Has an small gable on top
- Algorithm
 - Find a vertex created by bisectors from the original polygon
 - Move it to the midpoint of the supporting edge

[Wiki] Gable roof

[AGF] Creating a gable roof

Summary

- New type of skeleton
- Linear structure
- Algorithm in $O(n^2)$
- Existing subquadratic algorithm
 - Tailor-made data structures
- Applications in various areas

Sources

- [SSG] O. Aichholzer, F. Aurenhammer. Straight Skeleton for General Polygonal Figures in the Plane
- [ANT] O. Aichholzer, F. Aurenhammer, D. Alberts, B. Gaertner. A Novel Type of Skeleton for Polygons
- [SSI] P. Felkel, S. Obdrzalek. Straight Skeleton Implementation
- [AGF] R. G. Laycock, A. M. Day. Automatically Generating Roof Models from Building Footprints
- [SAS] D. Eppstein. A Subquadratic Algorithm for the Straight Skeleton
- [FC] <u>http://erikdemaine.org/foldcut/</u>
- [PR] <u>http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2003/EricBiunno/</u>
- [Wiki]Wikipedia

Thank you for your attention!

Questions?