N. Megow, K. Mehlhorn J. Mestre

This assignment is due on June 17/18 in your tutorial session. You are allowed (even encouraged) to discuss these problems with your fellow classmates. All submitted work, however, must be *written individually* without consulting someone else's solutions or any other source like the web.

Please read carefully the following (corrected) definition.

Definition 1 A matrix $A \in \mathbb{Z}^{m \times n}$ is totally unimodular if each square submatrix of A has determinant -1, 0, or 1. A square submatrix $B \in \mathbb{Z}^{k \times k}$ of A is a square matrix that is obtained by deleting m - k rows and n - k columns of A.

Problem 1

Show that for proving that a matrix A is totally unimodular, it is not enough to consider just submatrices involving consecutive rows and columns of A. How many squared submatrices has $A \in \mathbb{Z}^{m \times n}$?

Problem 2

Prove the following theorem using totally unimodularity.

Theorem 1 (The König-Egerváry Theorem (1931)) In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.

Problem 3

A matrix $A \in \{0,1\}^{m \times n}$ has the consecutive 1's property (along columns), if in every column the 1's appear consecutively (assuming some linear ordering of rows of A). Such matrices are called *interval matrices*.

Show that any matrix with the consecutive 1's property is totally unimodular

Problem 4

Suppose we have n activities to choose from. Activity i starts at time s_i and ends at time t_i (or more precisely just before t_i); if chosen, activity i gives us a profit of p_i units. Our goal is to choose a subset of the activities which do not overlap (nevertheless, we can choose an activity that ends at t and one that starts at the same time t) and such that the total profit, that is, the sum of profits of the selected activities, is maximized.

- 1. Give an integer programming formulation of the form $\max\{p^T x \mid Ax \leq b, x \in \{0, 1\}\}$ for this problem.
- 2. Show that the matrix A is totally unimodular, implying that one can solve this problem by solving the linear program $\{\max p^T x \mid Ax \leq b, 0 \leq x_i \leq 1 \text{ for every } i\}.$ (Use the result you proved in Problem 3.)

(4 points)

(4 points)

(4 points)

(4 points)