This assignment is **due on June 24/25** in your tutorial session. You are allowed (even encouraged) to discuss these problems with your fellow classmates. All submitted work, however, must be *written individually* without consulting someone else's solutions or any other source like the web.

Problem 1 (4 points)

Give an example of an integral matrix A and an integer vector b such that the polyhedron $P := \{x \mid Ax \leq b\}$ is integral, while A is not unimodular.

Problem 2 (2 points)

Consider the knapsack problem: Given is a weight bound K and a set of n items, each with a nonnegative weight w_j and nonnegative profit c_j , j = 1, ..., n. Determine a subset of items $S \subseteq \{1, ..., n\}$ of maximum total profit, $\sum_{j \in S} c_j$ such that $\sum_{j \in S} w_j \leq K$.

Give an ILP formulation for the knapsack problem and explain it.

Problem 3 (4 points)

Consider the shortest path problem: Given is a directed graph G = (V, A) with two distinct nodes $s, t \in V$. For each $(i, j) \in A$, we are given a nonnegative length, c(i, j). The length of a path is defined as the sum of the lengths of its arcs. The task is to find a shortest path, that is a path of minimum length, from s to t.

Give an ILP formulation for the shortest path problem and explain it.

Problem 4 (4 points)

Show that the following polyhedron has Chvatal rank 2.

$$-2x_1 + x_2 \le 0$$
$$2x_1 + x_2 \le 6$$
$$-x_2 \le -1$$