
Implementation of the Simplex Algorithm

Kurt Mehlhorn

May 18, 2010

1 Overview

There are many excellent public-domain implementations ofthe simplex algorithm; we list some
of them in Section 2. All of them are variants of the revised simplex algorithm which we explain
in Sections 4 to 6. The simplex algorithm is a numerical algorithm; it computes with real num-
bers. Almost all implementations of the simplex algorithm use floating point arithmetic; floating
point arithmetic incurs round-off error and hence none of the implementations mentioned in
Section 2 are guaranteed to find optimal solutions. They may also declare a feasible problem
infeasible or vice versa. The papers [DFK+03, ACDE07] give examples where CPLEX – a very
popular commercial solver – and SoPlex – a very popular public-domain solver – fail to find op-
timal solutions. However, for most instances the inexact solvers return optimal or near optimal
solutions. These solutions can be taken as a starting point for an exact solver as we discuss in
Section 8. Large linear programs have sparse constraint matrices, i.e., the number of nonzero
entries of the constraint matrix is small compared to the total number of entries. For the sake of
efficiency, it is important to exploit sparsity.

2 Resources

There are many excellent implementations of the simplex algorithm available. KM has used
the public-domain solver SoPlex (http://soplex.zib.de/) and the commercial solver
CPLEX.

H. Mittelmann maintains a page (http://plato.asu.edu/ftp/lpfree.html)where
he compares the following LP-solvers. I quote from his web-page.

This benchmark was run on a 2.667GHz Intel Core 2 processor under Linux. The MPS-
datafiles for all testcases are in one of (see column ”s”)miplib.zib.de/ [1], plato.asu.
edu/ftp/lptestset/ [2] www.sztaki.hu/ ˜ meszaros/public_ftp/lptestset/
(NETLIB[3], MISC[4], PROBLEMATIC[5], STOCHLP[6], KENNINGTON[7], INFEAS[8])
NOTE: files in [2-8] need to be expanded with emps in same directory!

The following codes were tested:

• BPMPD-2.21 www-neos.mcs.anl.gov/neos/solvers/lp:bpmpd/MPS.html (run locally)

1

• CLP-1.11.0 projects.coin-or.org/Clp PCx-1.1 www-fp.mcs.anl.gov/OTC/Tools/PCx/

• QSOPT-1.0 www.isye.gatech.edu/ wcook/qsopt/

• SOPLEX-1.4.1 soplex.zib.de/

• GLPK-4.36 www.gnu.org/software/glpk/

Times are user times in secs including input.

=== =============
s problem BPMPD CLP PCX QSOPT SOPLEX GLPK
=== =============
2 cont1 15 4011 22 13241 4127
2 cont11 26 106 51341
2 cont4 20 2062 44 9682 3355
=== =============

Problem sizes

problem rows columns nonzeros
===

cont1 160793 40398 399991
cont11 160793 80396 439989
cont4 160793 40398 398399

===

3 Linear Programming in Practice

As you can see from the examples above, LPs can involve a larger number of constraints (160
thousand in the examples above) and variables (40 to 80 thousand in the examples above). How-
ever, the constraint matrix tends to be sparse, i.e., the average number of nonzero entries per
row or column tend to be small (in the examples about, about 3 nonzero entries per row and 10
nonzero entries per column). Dense constraint matrices also arise in practice. However, then the
number of constraints and variables are much smaller. LargeLPs have up to 10 million nonzero
entries in the constraint matrix.

The main concerns for a good implementation of the simplex method are:

• exploit sparsity of the constraint matrix so as to make iterations fast and keep the space
requirement low and

• numerical stability.

I will address the first issue first and turn to the second issuein Section 7.

2

4 The Standard Simplex Algorithm

We consider LPs in standard form: minimizecT x subject toAx = b andx ≥ 0. The constraint
matrix A hasm rows andn columns wherem < n; A is assumed to have full row rank. LetB be
the basic variables andN the non-basic variables.AB is them×m submatrix ofA selected by the
basis. The standard simplex algorithm maintains:

• the basic solutionxB = A−1
B b with xB ≥ 0.

• the dictionaryA−1
B A,

• the objective valuez = cT
BxB = cT

BA−1
B b, and

• the vector of reduced costscT − cT
BA−1

B A. The entries corresponding to the basic variables
are zero.

In each iteration, we do the following:

1. find a negative reduced cost, say in columnj. If there is none, we terminate. The current
solution is optimal.

2. determine the basic variablebi to leave the basis. For this we inspect thej-th column of
the dictionary. If all entries are nonnegative, the problemis unbounded. LetdB =−A−1

B A j,
whereA j is the j-th column ofA. Among thebi ∈ B with dbi < 0, we find the one that
minimizes xbi

|dbi|
.

3. We move to the basisB \ bi ∪ j. For this purpose, we perform row operations on the
tableau. We subtract suitable multiples of the row corresponding to the leaving variable
from all other rows to as to generate a unit vector in thej-th row. This will also update
cost vector, objective value, and the basic solution.

The cost for the update isO(nm). Forn > m = 106, this is prohibitive. Even more prohibitive
is that the matrixA−1

B AN , whereAN is the part ofA corresponding to non-basic variables is dense.
Thus the space requirement of the tableau implementation isO(n(n−m)).

5 The Revised Simplex Method

The revised simplex method reduces the cost of an update toO(m2+n) and the space requirement
to O(m2+n+nz(A)), wherenz(A) is the number of nonzero entries of the constraint matrix.

How does one store a sparse matrix? One could store it asn + m linear lists, one for each
row and column. The linear list corresponding to a row contains the nonzero entries of the row
(together with the indices of these entries). With this representation, the cost of a matrix-vector
productAx is O(nz(A)). For each row ofA, we do the following.

3

assume that rowr has nonzero entries(r, j1,ar, j1), . . .(r, jk,ar, jk).
s :=0, ℓ :=1
while (ℓ ≤ k) do

s := s+ar, jℓxℓ, ℓ = ℓ+1
end while
We no longer maintain the dictionaryA−1

B A. We now only maintain the inverseA−1
B of the

basis matrix. We will refine this further in later sections. An iteration becomes:

1. computexB = A−1
B b. This is a matrix-vector product and takes timeO(m2).

2. compute the vectorcT −cT
BA−1

B A of reduced costs by first computingyT = cT
BA−1

B and then
yT A. So we are computing two matrix-vector products; the costs are O(m2) andO(nz(A)),
respectively.

3. select the variablej that should enter the basis.

4. compute the relevant column of the dictionary asdB = −A−1
B A j; this takes timeO(m2).

5. determine the variablebi that should leave the basis; this takes timeO(m2).

6. updateA−1
B by row operations. We are now performing row operations on a matrix of size

m×m+1 and hence this step takes timeO(m2).

The space requirement isO(m2) for the inverse of the basis matrix plusO(nz(A)) for the
constraint matrix plusO(n) for the vector of reduced costs.

6 Sparse Revised Simplex Method

The inverse of sparse matrix tends to be dense. Can we avoid tostore the inverse ofAB? Is there
are better way to maintain the inverse ofAB?

An LU-decomposition of a matrixAB is a pair(L,U) of matrices such thatAB = LU , L is a
lower diagonal matrix (all entries above the diagonal are zero) andU is an upper diagonal matrix.
The LU-decomposition is unique, if we require, in addition,thatL has ones on the diagonal. Here
are some useful facts about LU-decompositions.

• LU-decompositions can be computed by Gaussian elimination.

• Sparse matrices frequently have sparse LU-decompositions. This might require to permute
the rows and columns ofAB. Observe that we may permute the rows and columns ofAB.
Permuting columns corresponds to renumbering variables and permuting rows corresponds
to renumbering constraints.

Consider the selection of the first pivot. By interchanging columns and rows, we may
move any element of the matrix to the left upper corner. Thereare two considerations in
choosing the element.

4

– the element should not be too small (certainly nonzero) for the sake of numerical
stability. Recall that one is dividing by the pivot element in Gaussian elimination.

– We subtract a multiple of the row containing the pivot from any row where the pivot
column contains a nonzero element. Thus the number of nonzero elements created
by the step is the product of the number of nonzero elements inthe row and column
containing the pivot. This number should be small; this ruleis know as Markowitz
criterion.

• Given an LU-decomposition of a matrixAB = LU , it is easy to solve a linear systemABx =
b in timeO(nz(L)+nz(U)). We haveABx = (LU)x = L(Ux) = b. We therefore first solve
Ly = b and thenUx = y. Linear systems with a lower or upper diagonal matrix are easily
solved by backward or forward substitution. For example, inorder to solveLy = b, we first
compute the first entry ofy using the first equation, substitute this value into the second
equation and solve for the second variable, and so on. The time for this is proportional to
the number of nonzero entries ofL.

Exercise 1 Show that the inverse of an upper diagonal matrix is an upper diagonal matrix and
can be computed in time proportional to the product of the dimension of the matrix times the
number of nonzero entries of the matrix. Also, show that the product of two upper diagonal
matrices is upper diagonal.

The idea is now to use the LU-decomposition ofAB wherever we usedA−1
B in the preceding

section, i.e., instead of computingA−1
B b, we solveLUxB = b by first computingy with Ly = b

and thenxB with UxB = y. Please convince yourself that steps 1) to 5) are readily performed.
We still need to discuss what we do in step 6). Step 6) asks us toupdate the inverse of the basis
matrix. We now need to update the LU-decomposition.

The new basis matrix̃AB is obtained fromAB by replacing columnbi of AB by the j-th column
of A. Observe thatABebi , whereebi is thebi-th unit vector yields thebi-th column ofAB and hence
ABebie

T
bi

is am×m matrix whosebi-th column is equal toABebi and which has zeros everywhere
else. SimilarlyA jeT

bi
is a matrix withA j in columnbi and zeros everywhere else. Thus

ÃB = AB −ABebie
T
bi

+A je
T
bi

= AB +(A j −ABebi)e
T
bi
.

Multiplying by L−1 from the left yields

L−1ÃB = U +(L−1A j −Uebi)e
T
bi

=: R.

The right hand sideR is the matrixU with its bi-th column replaced by the vectorL−1A j; in
general, this is a sparse vector, becauseL−1 is sparse andA j is sparse.

We next compute an LU-factorization ofR, sayR = L̃Ũ . This is not a general LU-factorization
sinceR differs from an upper triangular matrix in only one column. We refer the reader to [SS93]
and its references for a detailed discussion on how to compute the LU-decomposition of a nearly
upper diagonal matrix sufficiently.

5

We can now write
L−1ÃB = R = L̃Ũ

and hence have
ÃB = LL̃Ũ .

Since the product of two lower triangular matrices is a lowertriangular matrix, we now have an
LU-decomposition of̃AB.

Actually, it is better to keep the factorizationLL̃Ũ and to useA−1
B =U−1L̃−1L−1. In this way,

the factorization of the basis matrix grows by one factor in every iteration. Accordingly, the costs
of the steps 1) to 5) grow in each iteration. When the costs of these steps become too large, one
refactorsAB from scratch.

7 Numerical Stability

LP-solvers use floating point arithmetic and hence the arithmetic incurs round-off error. In a row
operation, one first scales one of the rows (by dividing by thepivot element) and then subtracts a
multiple of this row from another row. Divisions by small elements are numerically instable and
hence to be avoided.

An Anecdote: KM taught this course in the year 2000. As part of the course, he organized a
competition. He asked the students to compute the optimal solution for an NP-complete cutting-
stock problem.

He also took part of the competition. He used a heuristic to produce feasible solutions and
used linear programming to compute lower bounds. He found a solution of objective value 213
and the LP proved a lower bound of 212.000001 (KM does not recall the true numbers). Since
the solution had to be integral, he knew that he had found the optimum and stopped his heuristic.
However, in class a student produced an integral solution ofvalue 212. When KM looked deeper,
he found that value 212.000001 was larger than 212 due to round-off errors.

This experience motivated the research reported on in the next section.

8 Exact Solvers

How can one avoid the pitfalls of approximate arithmetic. The answer is easy. Use exact arith-
metic. Under the assumption that all coefficients of the problem are integral (or more generally
rational), rational arithmetic suffices. The drawback of this approach is that rational arithmetic
is much slower than floating point arithmetic and hence only small problems can be solved.

The paper [DFK+03] pioneered a more clever approach. The authors argued that inexact
solvers usually find an optimal or a near-optimal basis. So they took the basis returned by the
inexact solver as the starting basis for an exact solver implemented in rational arithmetic. For a
collection of medium size LPs, they found that CPLEX found the optimal basis in all but two

6

cases. In the cases, where it did not find the optimum a small number of pivots sufficed to reach
the optimum.

[ACDE07] took this a step further. They used floating point arithmetic even more aggres-
sively. Instead of switching to rational arithmetic they switched to higher precision floating
arithmetic for computing the LU-decomposition of the constraint matrix. Then they rounded the
floating point numbers computed in this way to rational numbers (with small denominators) and
tried to verify that the decomposition is correct for the rational numbers obtained in this way.
This approach gave them a tremendous speed-up over [DFK+03].

Converting Reals to Rationals: The standard method for finding a rational number with small
denominator close to a real number is to compute the continued fraction expansion of the real
numbers; see the lectures notes of Computational Geometry and Geometric Computing (winter
term 09/10). For example,

0.6705= 0+
1

1/0.6705
= 0+

1
10000/6705

= 0+
1

1+3295/6705
= 0+

1

1+ 1
6705/3295

= 0+
1

1+ 1
2+115/3295

= 0+
1

1+ 1
2+ 1

3295/115

= 0+
1

1+ 1
2+ 1

28+75/115

= 0+
1

1+ 1
2+ 1

28+ 1
115/75

In this way, we obtain the following rational approximations with small denominator:

0 0+
1
1

= 1 0+
1

1+ 1
2

=
2
3

0+
1

1+ 1
2+ 1

28

=
57
85

.

References

[ACDE07] D. Applegate, W. Cook, S. Dash, and D. Espinoza. Exact solution to linear program-
ming problems.Operations Research Letters, 35:693–699, 2007.

[DFK+03] M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, E. Schömer, R. Schulte,
and D. Weber. Certifying and Repairing Solutions to Large LPs, How Good are
LP-solvers?. InSODA, pages 255–256, 2003.

[SS93] L. Suhl and U. Suhl. A fast LU update for linear programming.Annals of Operations
Research, 43:33 – 47, 1993.

7

