Implementation of the Simplex Algorithm

Kurt Mehlhorn
May 18, 2010

1 Overview

There are many excellent public-domain implementationte®timplex algorithm; we list some
of them in Section 2. All of them are variants of the revised@ex algorithm which we explain
in Sections 4 to 6. The simplex algorithm is a numerical atgaor; it computes with real num-
bers. Almost all implementations of the simplex algorithse floating point arithmetic; floating
point arithmetic incurs round-off error and hence none @f ithhplementations mentioned in
Section 2 are guaranteed to find optimal solutions. They n&y declare a feasible problem
infeasible or vice versa. The papers [DFB3, ACDEO7] give examples where CPLEX — a very
popular commercial solver — and SoPlex — a very popular pwddimain solver — fail to find op-
timal solutions. However, for most instances the inexabtess return optimal or near optimal
solutions. These solutions can be taken as a starting pmiranf exact solver as we discuss in
Section 8. Large linear programs have sparse constraimtcesti.e., the number of nonzero
entries of the constraint matrix is small compared to thal teamber of entries. For the sake of
efficiency, it is important to exploit sparsity.

2 Resources

There are many excellent implementations of the simplerrdlgn available. KM has used

the public-domain solver SoPlext(p://soplex.zib.de/) and the commercial solver
CPLEX.
H. Mittelmann maintains a paght{p://plato.asu.edu/ftp/Ipfree.html)where

he compares the following LP-solvers. | quote from his walge

This benchmark was run on a 2.667GHz Intel Core 2 processterdnnux. The MPS-
datafiles for all testcases are in one of (see columnrisp)ib.zib.de/ [1], plato.asu.
edu/ftp/Iptestset/ [2] www.sztaki.hu/ ~meszaros/public_ftp/Iptestset/
(NETLIB[3], MISC[4], PROBLEMATIC[5], STOCHLP[6], KENNINGTON[7], INFEAS[8])
NOTE: files in [2-8] need to be expanded with emps in same ttirgt

The following codes were tested:

e BPMPD-2.21 www-neos.mcs.anl.gov/neos/solvers/Ip: gl S.html (run locally)

CLP-1.11.0 projects.coin-or.org/Clp PCx-1.1 www-fp.nacd.gov/OTC/Tools/PCx/

QSOPT-1.0 www.isye.gatech.edu/ wcook/gsopt/

SOPLEX-1.4.1 soplex.zib.de/
o GLPK-4.36 www.gnu.org/software/glpk/

Times are user times in secs including input.

S problem BPMPD CLP PCX QSOPT SOPLEX GLPK
2 contl 15 4011 22 13241 4127
2 contll 26 106 51341
2 cont4 20 2062 44 9682 3355

Problem sizes

problem rows columns nonzeros
contl 160793 40398 399991
contll 160793 80396 439989
cont4 160793 40398 398399

3 Linear Programming in Practice

As you can see from the examples above, LPs can involve alaugeber of constraints (160
thousand in the examples above) and variables (40 to 80ahdus the examples above). How-
ever, the constraint matrix tends to be sparse, i.e., theageenumber of nonzero entries per
row or column tend to be small (in the examples about, abowrizero entries per row and 10
nonzero entries per column). Dense constraint matricesaaise in practice. However, then the
number of constraints and variables are much smaller. LaPgehave up to 10 million nonzero
entries in the constraint matrix.
The main concerns for a good implementation of the simplethotkare:

e exploit sparsity of the constraint matrix so as to make ttens fast and keep the space
requirement low and

e numerical stability.

| will address the first issue first and turn to the second igs$&®ction 7.

4 The Standard Simplex Algorithm

We consider LPs in standard form: minimizkx subject toAx = b andx > 0. The constraint
matrix A hasm rows andn columns wheren < n; Ais assumed to have full row rank. LBtbe
the basic variables arid the non-basic variable#g is them x m submatrix ofA selected by the
basis. The standard simplex algorithm maintains:

e the basic solutiong = Ag*b with xg > 0.
o the dictionaryAg*A,
e the objective valug = cfxg = cLAg'b, and

e the vector of reduced cost$ — cEAglA. The entries corresponding to the basic variables
are zero.

In each iteration, we do the following:

1. find a negative reduced cost, say in columnf there is none, we terminate. The current
solution is optimal.

2. determine the basic varialeto leave the basis. For this we inspect jhtlh column of
the dictionary. If all entries are nonnegative, the probiemmbounded. Ledg = —AglAj,
whereA,; is the j-th column ofA. Among theb; € B with d, < 0, we find the one that
minimizes

‘dbi | .

3. We move to the basiB\ by U j. For this purpose, we perform row operations on the
tableau. We subtract suitable multiples of the row corraedptg to the leaving variable
from all other rows to as to generate a unit vector in fié row. This will also update
cost vector, objective value, and the basic solution.

The cost for the update 8(nm). Forn > m= 10P, this is prohibitive. Even more prohibitive
is that the matri>A§1AN, whereAy is the part ofA corresponding to non-basic variables is dense.
Thus the space requirement of the tableau implementatoOgig —m)).

5 The Revised Simplex Method

The revised simplex method reduces the cost of an upd&igmé-+n) and the space requirement
to O(n? + n+nz(A)), wherenz(A) is the number of nonzero entries of the constraint matrix.

How does one store a sparse matrix? One could storenttas linear lists, one for each
row and column. The linear list corresponding to a row corgtdhe nonzero entries of the row
(together with the indices of these entries). With this espntation, the cost of a matrix-vector
productAx is O(nz(A)). For each row oA, we do the following.

assume that rowhas nonzero entrigs, j1,a j,), . .. (I, jk &,)-
s:=0,0:=1
while (¢ < k) do
Si=s+ajX, {=(+1
end while

We no longer maintain the dictionadg*A. We now only maintain the inversis* of the
basis matrix. We will refine this further in later sections ieration becomes:

1. computexg = Ag'b. This is a matrix-vector product and takes ti@@r?).

2. compute the vecta’ — cLA;*A of reduced costs by first computigg = c Az * and then
yTA. So we are computing two matrix-vector products; the cast©am?) andO(nz(A)),
respectively.

select the variablgthat should enter the basis.
compute the relevant column of the dictionarydas= —Ag*A;; this takes timed(n?).

determine the variablg that should leave the basis; this takes ti@(@?).

o o M W

updateAg1 by row operations. We are now performing row operations ora#irof size
mx m+ 1 and hence this step takes tiQem?).

The space requirement @(n?) for the inverse of the basis matrix pl@(nz(A)) for the
constraint matrix plu®(n) for the vector of reduced costs.

6 Sparse Revised Simplex Method

The inverse of sparse matrix tends to be dense. Can we avsidrothe inverse oig? Is there
are better way to maintain the inverseAy?

An LU-decomposition of a matridg is a pair(L,U) of matrices such thadg = LU, L is a
lower diagonal matrix (all entries above the diagonal are)zandU is an upper diagonal matrix.
The LU-decomposition is unique, if we require, in additidmgtL has ones on the diagonal. Here
are some useful facts about LU-decompositions.

e LU-decompositions can be computed by Gaussian elimination

e Sparse matrices frequently have sparse LU-decomposifldms might require to permute
the rows and columns &g. Observe that we may permute the rows and colummssof
Permuting columns corresponds to renumbering variabléparmuting rows corresponds
to renumbering constraints.

Consider the selection of the first pivot. By interchangimduoins and rows, we may
move any element of the matrix to the left upper corner. Tlaeeetwo considerations in
choosing the element.

— the element should not be too small (certainly nonzero) tiergake of numerical
stability. Recall that one is dividing by the pivot elememGaussian elimination.

— We subtract a multiple of the row containing the pivot frony aow where the pivot
column contains a nonzero element. Thus the number of noreements created
by the step is the product of the number of nonzero elemeriteeinow and column
containing the pivot. This number should be small; this islenow as Markowitz
criterion.

e Given an LU-decomposition of a matrbg = LU, it is easy to solve a linear systefgx =
bintimeO(nz(L)+nz(U)). We haveAgx = (LU)x = L(UX) = b. We therefore first solve
Ly = b and thendJx =y. Linear systems with a lower or upper diagonal matrix aréyeas
solved by backward or forward substitution. For examplerder to solvdy = b, we first
compute the first entry of using the first equation, substitute this value into the sdco
equation and solve for the second variable, and so on. Theeftnthis is proportional to
the number of nonzero entries lof

Exercise 1 Show that the inverse of an upper diagonal matrix is an upper diagonal matrix and
can be computed in time proportional to the product of the dimension of the matrix times the
number of nonzero entries of the matrix. Also, show that the product of two upper diagonal
matricesis upper diagonal.

The idea is now to use the LU-decompositionfgfwherever we usedg! in the preceding
section, i.e., instead of computimxglb, we solveLUxg = b by first computingy with Ly = b
and thenxg with Uxg = y. Please convince yourself that steps 1) to 5) are readiffppeed.
We still need to discuss what we do in step 6). Step 6) asks ugdate the inverse of the basis
matrix. We now need to update the LU-decomposition.

The new basis matrifg is obtained fromAg by replacing columt; of Ag by the j-th column
of A. Observe thaf\gey, , whereey, is thebj-th unit vector yields théj-th column ofAg and hence
ABeoiegi is amx mmatrix whosebj-th column is equal té\ge, and which has zeros everywhere

else. SimilarIijegi is a matrix withA; in columnb; and zeros everywhere else. Thus
AB = AB—ABeoiegi —l—Angi =Ag+ (Aj —ABeOi)egi.
Multiplying by L=1 from the left yields

L 'Ag=U+ (L 'Aj—Uey)e) =R
The right hand sidd is the matrixU with its bj-th column replaced by the vecthrlAj; in
general, this is a sparse vector, becduskis sparse and; is sparse.

We next compute an LU-factorizationBf sayR= LU. Thisis not a general LU-factorization
sinceR differs from an upper triangular matrix in only one columne Yéfer the reader to [SS93]
and its references for a detailed discussion on how to coathetLU-decomposition of a nearly
upper diagonal matrix sufficiently.

We can now write . .
LAz =R=1LU

and hence have
Ag =LLU.
Since the product of two lower triangular matrices is a low@ngular matrix, we now have an
LU-decomposition ofig.
Actually, it is better to keep the factorizatithU and to usedg® = U ~1L~1L~1. In this way,
the factorization of the basis matrix grows by one factomarg iteration. Accordingly, the costs

of the steps 1) to 5) grow in each iteration. When the costheséd steps become too large, one
refactorsAg from scratch.

7 Numerical Stability

LP-solvers use floating point arithmetic and hence theraetic incurs round-off error. In a row
operation, one first scales one of the rows (by dividing bypiliet element) and then subtracts a
multiple of this row from another row. Divisions by small glents are numerically instable and
hence to be avoided.

An Anecdote: KM taught this course in the year 2000. As part of the coursegriganized a
competition. He asked the students to compute the optinhaico for an NP-complete cutting-
stock problem.

He also took part of the competition. He used a heuristic talpce feasible solutions and
used linear programming to compute lower bounds. He fouralwisn of objective value 213
and the LP proved a lower bound of 212.000001 (KM does notlrdeatrue numbers). Since
the solution had to be integral, he knew that he had foundpgkiemam and stopped his heuristic.
However, in class a student produced an integral solutiealoke 212. When KM looked deeper,
he found that value 212.000001 was larger than 212 due tarofirerrors.

This experience motivated the research reported on in tkieseetion.

8 Exact Solvers

How can one avoid the pitfalls of approximate arithmetice Bmswer is easy. Use exact arith-
metic. Under the assumption that all coefficients of the [@mbare integral (or more generally
rational), rational arithmetic suffices. The drawback a$ @épproach is that rational arithmetic
is much slower than floating point arithmetic and hence omlglsproblems can be solved.

The paper [DFK 03] pioneered a more clever approach. The authors arguédhthact
solvers usually find an optimal or a near-optimal basis. ®y tbok the basis returned by the
inexact solver as the starting basis for an exact solveramphted in rational arithmetic. For a
collection of medium size LPs, they found that CPLEX found gptimal basis in all but two

cases. In the cases, where it did not find the optimum a smadbeu of pivots sufficed to reach
the optimum.

[ACDEOQ7] took this a step further. They used floating pointhemetic even more aggres-
sively. Instead of switching to rational arithmetic theyiteled to higher precision floating
arithmetic for computing the LU-decomposition of the coastt matrix. Then they rounded the
floating point numbers computed in this way to rational nuralfeith small denominators) and
tried to verify that the decomposition is correct for theaasl numbers obtained in this way.
This approach gave them a tremendous speed-up over{DBK

Converting Reals to Rationals: The standard method for finding a rational number with small
denominator close to a real number is to compute the cordifraetion expansion of the real
numbers; see the lectures notes of Computational Geomedrgsaometric Computing (winter
term 09/10). For example,

L 1
0.6705= 0+ —oroor = 0+ oosmmasar
©1/06705~ ' 100006705
: 1
—0+ T —
1432956705 1+ godoes
L 1
L P S S
1+ 5711573205 Y rdm
) 1
— 0+1+—1 - 0+1+—1
2+ g5r7571Ts 2+28+;

115/75
In this way, we obtain the following rational approximatsonwith small denominator:

1 1 2 1 57
1 +1+% 3 +1+ 1 85

2+

References

[ACDEOQ7] D. Applegate, W. Cook, S. Dash, and D. Espinoza.dEgalution to linear program-
ming problems Operations Research Letters, 35:693-699, 2007.

[DFK*03] M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, &chomer, R. Schulte,
and D. Weber. Certifying and Repairing Solutions to Larges,LRow Good are
LP-solvers?. IrSBODA, pages 255-256, 2003.

[SS93] L. Suhland U. Suhl. A fast LU update for linear prognaimg. Annals of Operations
Research, 43:33 — 47, 1993.

