Totally unimodular matrices

Def. A matrix A is totally unimodular if each subdeterminant of A is 0, 1, or -1. Clearly, $A \in \mathbb{R}^{n \times n}$.

(A subdeterminant of $A \in \mathbb{Z}^{m \times n}$ is $\det B$ for some square submatrix B of A obtained by choosing an appropriate number of rows and columns of A.)

Thus (Hoffman, Konvaling '56)

$A \in \mathbb{Z}^{m \times n}$ totally unimodular $\iff \exists \, P = \{ x | Ax \leq b, x \geq 0 \}$ integral for any $b \in \mathbb{Z}^m$.

Pf.

"\Rightarrow" Let $A \in \mathbb{Z}^{n \times n}$, $b \in \mathbb{Z}^n$, and x a vector in P.

x is solution of some subsystem $A'x = b'$ for some subsystem $A'x \leq b'$ of $(A^\top x) \leq (b^\top)$, with $A' \in \mathbb{Z}^{k \times k}$ non-singular, $(\Rightarrow \det A' \neq 0)$

A totally \iff $\det A' = 1$ \iff x is integral.

Cramer's rule: $x_i = \frac{\det (A'_{i,:})}{\det A'}$ integral for integral $b \rightarrow A'_{i,:}$.

"\Leftarrow" Suppose all vertices of P are integral $\forall b \in \mathbb{Z}^m$.

Let $A' \in \mathbb{Z}^{k \times k}$ be non-sq. submatrix of A.

To show $|\det A'| = 1$. W.l.o.g.

$A = \begin{pmatrix} A' & \ast \\ \ast & \ast \end{pmatrix}$

$(A \cdot I_m) = \begin{pmatrix} A' & I_k & 0 \\ \ast & \ast & 0 \\ \ast & \ast & I_{m-k} \end{pmatrix}$

$B \in \mathbb{Z}^{m \times m}$

$\det A' = \det B$.

To show \(|\text{det} A^1| = |\text{det} B| = 1 \), prove that \(B^{-1} \) is integral.

Why? \(B \cdot B^{-1} = I = \text{det} B \cdot \text{det}(B^{-1}) = 1 \)

\(B \) is integral \(\iff \text{det} B \) is integral \(\iff \text{det}(B^{-1}) = 1 \)

Let \(n \in \mathbb{Z}_+ \) and show that \(B^{-1} e_i \in \mathbb{Z}^m \).

Choose \(y \in \mathbb{Z}^m \) s.t. \(z = y + B^{-1} e_i \geq 0 \).

Then \(b = Bz = By + e_i \) is integral.

Add rows to \(z \rightarrow z' \) with \((A_{lm}) z' = Bz = b \in \mathbb{Z}^m\).

\[
(A_{lm}) z' = \begin{pmatrix} A^1 \ast & I_m \ast & 0 \\ * \ast & 0 \ast \end{pmatrix} \begin{pmatrix} z_1 \\ 0 \\ \vdots \\ z_m \end{pmatrix} = b.
\]

Let \(z'' \) consist of first \(n \) entries of \(z' \).

\[
\begin{pmatrix} A^1 \ast \\ * \ast \end{pmatrix} z'' = \begin{pmatrix} b \ast \\ 0 \ast \end{pmatrix} \quad \text{with} \quad z'' \geq \begin{pmatrix} 0 \ast \\ 0 \ast \end{pmatrix}.
\]

Furthermore, \(z'' \) satisfies \(T \) with equality \(\iff \) the first \(k \) rows and the last \(n-k \) rows are \(\text{lin. indep.} \).

\(z'' \) is a vector of \(\mathbb{Z}^m \) \(\iff \) \(z'' \in \mathbb{Z}^m \) \(\iff \) \(z' \in \mathbb{Z}^{m+n} \) \(\iff \) \(z \) is integral.

\[
\square
\]
Then. Let $A \in \mathbb{Z}^{m \times n}$. The following statements are equivalent:

(i) A is totally unimodular.

(ii) $\forall b \in \mathbb{Z}^m$, $\forall c \in \mathbb{Z}^n$:

$$\max \{ c^T x \mid Ax \leq b, x \geq 0 \} = \min \{ y^T b \mid y^T A \geq c^T, y \geq 0 \}$$

have integral solutions x and y (if finite).

(iii) $Ax \leq b, x \geq 0$ is TDI for all $b \in \mathbb{R}^m$.

(iv) $\forall R \subseteq \{1, -1\}^n$ 1-partition $R = R_1 \cup R_2$ (disjoint):

$$\sum_{i \in R_1} a_{ij} - \sum_{i \in R_2} a_{ij} \in \{ -1, 0, 1 \} \quad \forall j \in \{1, -1\}^n$$

Corollary: The node-edge incidence matrix of an undirected graph is totally unimodular if and only if the graph is bipartite.

This follows directly from (iv) \Rightarrow (i).

\[\begin{vmatrix} e_1 & e_2 & \cdots & e_n \\ v_1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix} \]

\[R_1 \quad \text{resp. any subset of nodes} \]

Then. Let $A \in \{0, 1, -1\}^{m \times n}$, where each column has at most one +1 and at most one -1. Then A is TDI.

Proof. Let N be the submatrix of A. Induction on k:

$k = 1$: $\det N \in \{0, 1, -1\}$ \(\checkmark \)

$k \geq 2$:

(i) N has at least one column with at most one non-zero entry.

\[= \det N = \pm 1, \det N' \text{ for } (k-1) \times (k-1) \text{ matrix} \]

\[= \det N \in \{0, 1, -1\} \text{ by induction hypothesis} \]

(ii) N has all columns with more than one non-zero entry (one +1, one -1).

Then sum of all rows gives $(0, \ldots, 0)$.

\[\Rightarrow \text{lin. dependent} = \det N = 0. \]
Corollary: The node-edge incidence matrix of any digraph is Trivial.

It follows directly from prev. Thus,

\[D = (V, A) \quad \neq \quad \begin{pmatrix}
 v_1 & a_1, a_2, \ldots, a_n \\
 v_2 & \begin{pmatrix} +1 & 0 \\
 -1 & 0 \\
 0 & 0 \\
 0 & 0
 \end{pmatrix} \\
 \vdots & \ddots \\
 v_n & \end{pmatrix} \]

\[v_1 \xrightarrow{a_i} v_2 \]

Theorem: A matrix \(A \in \{0, 1\}^{m \times n} \) has the consecutive ones property (along columns), if in every column the 1's appear consecutively (assuming some linear ordering of rows of \(A \)). Any matrix with the consecutive ones property is Trivial.

Proof: [Homework]