1 Column Generation and the Cutting Stock Problem

In the linear programming approach to the traveling sal@spnablem we used the cutting plane
approach. The cutting plane approach is appropriate wheenummber of variables is reasonably
small and the number of constraints is big. Column generatpplies to the dual situation where
the number of constraints is small and the number of vargaklbig.

As a byproduct of the discussion we will see that a problem inaag different ILP-formulations.
The corresponding linear programming relaxation may belvavy differently.

1.1 A General View at Column Generation (also called Pricing)

Column generation is a method of dealing with linear progravith an exponential number of
variables. It is the dual of cut generation which deals wiitedr programs with an exponential
number of constraints.

Consider a linear program and assume #iata non-basic variable. Le be the column of
the constraint matrix correspondingi@nd letc, be the coefficient ok in the cost function.

We useAg for the part of the constraint matrix involving the basis agdor the basis vari-
ables. Then

xg = Aglb— Aglax

and
Z=cExg + X = CE A0+ (cx — R Agtay)x.

It pays off to addk to the basis if the reduced caxt— cEAgla of the variablex is negative.
Pricing treats the column vect@ as an unknown and asks itself whether there is a variable
x with corresponding columay such thaty — cLAgtay, < 0.

1.2 The Cutting Stock Problem

The following problem arises in a sawing mill. We have an mitéd number of raws of length
L and need to cull; rods of length; for 1 <i < k. The goal is to minimize the number of raws
used. Led = (dy,...,dx) be the demand vector.

The following ILP-formulation is natural. Ldd = ; di. Then we certainly do not need more
thanD raws. Introduce integral variableg, 1 <i <k, 1< j <D, and integral variableg;,
1 < j <D. All variables are non-negative and theare binary (only values zero and one);
is the number of rods of lengthcut from thej-th raw andz; is one if thej-th raw is used. Our
goal isto minimizezj z; subject to the constraingg lixjj < Lzj for all j andzj Xij = d for all i.
Observe that the second class of constraints ensureslttiatrends are satisfied and that the first
class of constraints guarantees that no raw is over-useslpidiblem with this ILP-formulation
is that its linear programming relaxation gives very wealris.

Let K = 5, dilj /L be the total length of the rods demanded divided by the leafthraw.
Then[K] is certainly a lower bound on the number of raws required. OReelaxation of the
ILP-formulation above gives no better bound. We exhibit muton to the LP with objective



valueK. The idea is simply to us€ rods (the firs K| fully and the last one fractionally) and to
distribute the demand evenly over the rods. fet K — |[K|. We set

1 forl<j<|K]

, di
zj=<f forj=|K|+1 andforalll,xij:R'zj

Then
EI iAi EI itiZj ]

and
inj =di/K(|K|+k) =(di/K)K=d; foralli
J

1.3 TheGreedy Heuristik

There is a simple heuristic for the cutting stock problem. &dasider the rods to be cut in
arbitrary order. Assume that we have already produced sdiie @ods using some number of
raws. We will have leftovers from the raws already in use aedw¥ have fresh raws. When we
have to cut a rod, we use one of the leftovers if there is a bogigh leftover, and we will use a
new raw otherwise.

Lemma 1l The greedy strategy uses at most | 2K + 1| raws.

Proof: Number the raws in the order in which they are put into use atfd be the total number
of raws used. For a ray letw; be its unused part (= waste) and lgtbe its used part. Then

uj+wj=Lfor1<j<G and uj =) dili =KL.
yu-3
When thej-th rod (j > 1) is put into use, the leftovers from the preceding raws arghbrt to
cut the rod under consideration. Thus
wji_1<uj forl<j<G

Observe that this inequality holds when thth raw is put into use, and that wastes decrease and
used parts increase over time. Thus the inequality holdseatnd. Thus

GL= % uj+wj<we+2 3 uj<L+2KL
16 1<J=G

and hencé& < 2K + 1. SinceG is an integer we even ha@< |[2K +1]. ]



1.4 An Alternative I L P-Formulation

The alternative formulation uses a large number of varg@abW cutting pattern is any vector
p=(ay,...,a) of non-negative integers such thgtal; < L. There is in general an exponential
number of cutting patterns. Trivial cutting patterns culyaimds of one kind, i.e., there is an
such thaty = |L/li] anda; =0 for j #1i.

Let P be the set of all cutting patterns. For a pattpriet x, the number of times the pattern
pis used. The goal is to

minimizey ,Xp subject tod = 3, pXp, Xp > 0, Xp integral.

As usual we obtain the LP relaxation by dropping the intetyrabnstraint. The resulting LP has
an exponential number of variables (but oklgonstraints). The advantage of the alternative LP
over the natural LP is that it provides much better lower lsuior the underlying ILP.

We give a trivial example. Assume that we have raws of lengthd@want to cut five rods of
length two. The lower bound tells us that we need at leastrios.

There is only one cutting pattern: Use a raw to produce aasiragl of length one and hence
we obtain the following ILP in a single variable.

minimizexp subject to 5= xp, Xp > 0, Xp integral.

The ILP and LP relaxation have optimal value five. We invite tkader to work out a more
complex example.
We need to discuss two issues:

e How to solve the linear program?

e How to go from an optimal solution to the LP to an optimal smiatof the ILP.

1.5 SolvingthelLP

Let P’ C P be a subset of the cutting patterns. Initially, we might tRkas the set of all trivial
cutting patterns. We solve the LP restricted to the varail®. The solution has a certain basis
B. Let Ag be the matrix of cutting patterns in the basis. The cost vastthe all-one vector.
Pricing leads to the following question:

Is there a cutting pattern, i.e., a vect= (ay, ..., 8x) of non-negative integers with; g;lj <
L, such that 2-u"p < 0, whereu" = 1TAgl and1l is the all-one vector? This is a knapsack
problem. We have a knapsack of capatitgndk different objects. Théth object has weighg;
and valueu;. The question is whether we can fill the knapsack (usingpjects of kindi) such
that the capacity of the knapsack is not exceeded,¥;&)i < L and such that the value of the
knapsack exceeds one, i.e’,p = Yiuig > 1.

Let us go through an example. The example is trivial buttithts/e. We have raws of length
4. We want one rod of length 1 and one rod of length 3. We stdit thue trivial cutting patterns
(1,0) and(0,1). Thenu™ = (1,1). So we ask whether there aganda, such that

l.ag+3-a2<4 and a;+a> 1
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This has solution§2,0), (3,0), (4,0) and(1,1).
The knapsack problem is NP-complete, but not strongly Nfgtete. Dynamic program-
ming usually works well for the knapsack problem.

1.6 Dynamic Programming for the Knapsack Problem

We assume that thig are integer. We fill a tabl@ with index set[0..L] such thatT ]I] is the
maximal value of a knapsack whose weight is at modt/e do first using only objects of type
one, then objects of type one and two, ... .

Suppose we have only one kind of object. There is not muctcehse have: For < |1 the
value is zero, i.eT[l] =0 for | <l and forl; <1 <L we can add one item of valug to a
knapsack of weight at mokt-11. ThusT[l] =uy+ Tl —I4] for | > 15.

Assume now that we considered the fkst 1 items and now consider theth item. We can
use it or not. Thus we should update thevalues according to the rule: Fbk |y leave the
T-value unchanged and for < | <L setT[l] = max(T[l],ux+ T[l —Ig])-

It is important to consider thies in increasing orderf(or (int | = 1[k], | <= L;
| ++) ) in the update step to account for the fact that we may tak&-thetem any number of
times. The initialization step is actually a special casthefupdate step. We could initialize
with the zero-vector and then start wikh= 1. The running time of dynamic programming for
the knapsack problem B(kL). This is pseudo-polynomial.

1.7 SolvingthelLP

The solution of the LP gives us a lower bound for the optiméitsan to the ILP. It also allows
us to compute integer solutions.

The simplest way to obtain integer solutions is to round @ovidues of all variables. In this
way all demands are certainly satisfied.

Alternatively, we could round down. Consider any basicafalexp. We round it down and
use the cutting patten, |xp | times. This will satisfy part of the demand (usually a langetion
of it). We satisfy the remaining demand using the greedyibgar

If we are lucky the LP lower bound tells us that the solutiotagied in this way is optimal.

If not, we use branching. We take one of the fractional védessayx, in the LP (one whose
value, sayB is close to half-integral) and generate two subproblemse @ith the additional
constrainix < | ] and one withx > [B].

2 General Cutting Plane Methods. Gomory Cuts

We show that ILPs can be solved by solving a series of lineagnams.
Consider an integer linear program

max{ c'x; Ax< b,x>0,xe N"} (ILP)
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Figure 1. Consider the inequalitigs< x, y < 3—X%, x> 0,y > 0. The feasible regio® is

a triangle with verticeg0,0), (3,0), and(3/2,3/2). The boundary oP is shown dashedP
contains the integral pointg0,0), (1,0),(2,0),(3,0),(1,1),(2,1) }. They comprise the feasible
sethk of the integer program. The boundary of the convex Rubbf F, is shown in bold. It is
defined by the inequalitigs< X,y <3—x, x>0,y >0, andy < 1.

Thelinear programming relaxation of ILP is obtained by dropping the integrality constraint. We
obtain the LP
max{c'x; Ax< b,x>0,x € R"} (LP)

Clearly, the maximal objective value of the LP is at leastdhgctive value of the ILP; the linear
programming relaxation provides an upper bound.

Let i = {x; Ax< b,x>0,xc N"} be the feasible set of ILP; observe tligtis a discrete
set. The feasible region & = {x; Ax< b,x>0,xc R"} of LP is a superset oF; it is a
connected subset &". In principle, the optimization problem ovér can be formulated as a
linear program. The convex hul| of F is a convex set with vertices if. We could describ&
by a system of inequalities and then use this system to agetirsee Figure 4. The problem with
this approach is that

e the description could be big (= it might require a very largenter of constraints to define
A,

e the description could be hard to find,

¢ it would be overkill to find a complete descriptionf We only need a linear description
in the vicinity of the optimal solution.

The idea of cutting plane methods is to add linear ineqealit the linear program as needed,
namely to cut off fractional solutions (hence the name). idlka is simple. We call an inequality
a'x < ¢ valid for ILP if a'x < & for all x € /. We have the following simple, but powerful
lemma.



Lemma?2 Ifaisintegral and

a'x<o
isvalid for ILP then
alx<|d]
isvalid for ILP.
Proof: If a'x < & andx € F thena'x € Z and henca'x < |4 ]. 1

We next discuss Gomory’s method for finding valid inequeditof the forma™x < & with a
integral andd fractional.

Let B be an optimal basis of the LP (we assume for simplicity thatthR is bounded) angt
be the corresponding optimal solution to the LBlis integral, it is also an optimal solution of
ILP and we are done.

So assume that" is not integral. Then one of the basic variables, sayas a fractional
value. Consider the corresponding row of the dictionary

x=bi+ ax. 1)
A

bi is a rational number which is not integral. For a rational ben let {3} = 3 — [ 3] be the
fractional part of3. Then{b;} # 0. We split equation 1 into is integral part and its fractiona

part and obtain _ _
xi—[bi] =S aijxj={bi}+ ) {a&j}x.
& o

For every feasible solution of our ILP the left hand side isirteger (since the variables are
constrained to be integral) and hence the right hand sidedgrial for every feasible solution of

our ILP. Thus _
E={B}+ 3 (&} ez
IE

for every feasible solution of the ILP. _ _

Let us take a closer look at this expression. We hflwé > O sinceby; is fractional, we
have{a;j} > 0 by the definition of fractional value and we haxe> 0 since our variables are
constrained to be non-negative. THas> O for every feasible solution of our ILP. Sinéeis
known to be integral, we even haize> 1. Thus

{bi}+ Zu{a_“}xj >1
j€
for every feasible solution of our ILP. We may therefore alid tnequality to the ILP and also
to its linear programming relaxation.

The addition of the new constraint has no effect on the ILPjwsé argued thaE > 1 for
every feasible solution to the ILP. It does however have &cebn the linear programming
relaxation. Observe that in our current solution, we hﬂ}\/& O for all j € N and hence the
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current LP-solution is cut off by the new constraint. Fostleason, the new constraint is called
a cutting plane.

Let us look at an example. We have a ILP in two variables,xsagdy, we are trying to
maximizey and we have the constraintg.< x andy < 3—x. We add slack variablesandt
and obtain the linear prograyy-s—x = 0 andy+t +x = 3. An optimal solution to the linear
programming relaxation i§x,y,s,t) = (3/2,3/2,0,0). We use the fact that has a fractional
value to generate a cut. Solving fom terms of the non-basic variablegndt yields

3 1 1
2X—s+t=3 or x:é-i—és—ét.

Splitting into integral and fractional part gives us

1t 1 1 1t
X—1-t= > + 28+ St

The right hand side is integral and positive for every felasgmlution of the ILP and hence we
may generate the cut

}+}s+}t>l or s+t>1

2 2 2~ -
We may also interpret this constraint in termsxaindy. Adding our two original constraints
gives 3+ s+t = 3. Together withs+t > 1 this impliesy < 1.

The technique for introducing new constraints just degdiivas invented by Gomory in
the late 50s and early 60s. It can be shown that if Gomory aetsadded in a careful way,
the LP will have an integral optimal solution after a finitenmoer of iterations, see?[ Section
23.8]. The number may be large, however. It must be largeamibrst case, since integer linear
programming is NP-complete.

| called this section general cuts, because it worksef@ry integer linear program. For
specific integer linear programs, one can also use probpesoiec cuts. We will see an example
below in the section on the Traveling Salesman Problem. |@moi$pecific Cuts are usually
much more effective than general cuts.

How does one resolve an LP after adding a cutting plane. We Kradready (see Sectio?®),
but it is worthwhile to review it. We introduced the constrigt > 1 which is not satisfied by our
current basis solution. We add a non-negative slack varmlthe equatiors= E — 1, and add
sto the basis. In this way we obtain a dual feasible basis ésime have not changed the cost
function) which we can take as the initial basis for phaséd the simplex method.

3 TheTraveling Salesman Problem

Go through the chapter on the Traveling Salesman Probleheibaok by Cook et af].



