
1 Column Generation and the Cutting Stock Problem

In the linear programming approach to the traveling salesman problem we used the cutting plane
approach. The cutting plane approach is appropriate when the number of variables is reasonably
small and the number of constraints is big. Column generation applies to the dual situation where
the number of constraints is small and the number of variables is big.

As a byproduct of the discussion we will see that a problem mayhave different ILP-formulations.
The corresponding linear programming relaxation may behave very differently.

1.1 A General View at Column Generation (also called Pricing)

Column generation is a method of dealing with linear programs with an exponential number of
variables. It is the dual of cut generation which deals with linear programs with an exponential
number of constraints.

Consider a linear program and assume thatx is a non-basic variable. Letax be the column of
the constraint matrix corresponding tox and letcx be the coefficient ofx in the cost function.

We useAB for the part of the constraint matrix involving the basis andxB for the basis vari-
ables. Then

xB = A−1
B b−A−1

B axx

and
z = cT

BxB + cxx = cT
BA−1

B b+(cx − cT
BA−1

B ax)x.

It pays off to addx to the basis if the reduced costcx − cT
BA−1

B a of the variablex is negative.
Pricing treats the column vectorax as an unknown and asks itself whether there is a variable

x with corresponding columnax such thatcx − cT
BA−1

B ax < 0.

1.2 The Cutting Stock Problem

The following problem arises in a sawing mill. We have an unlimited number of raws of length
L and need to cutdi rods of lengthli for 1≤ i ≤ k. The goal is to minimize the number of raws
used. Letd = (d1, . . . ,dk) be the demand vector.

The following ILP-formulation is natural. LetD = ∑i di. Then we certainly do not need more
thanD raws. Introduce integral variablesxi j, 1≤ i ≤ k, 1≤ j ≤ D, and integral variablesz j,
1≤ j ≤ D. All variables are non-negative and thez j are binary (only values zero and one):xi j

is the number of rods of lengthli cut from thej-th raw andz j is one if thej-th raw is used. Our
goal is to minimize∑ j z j subject to the constraints∑i lixi j ≤ Lz j for all j and∑ j xi j = di for all i.
Observe that the second class of constraints ensures that all demands are satisfied and that the first
class of constraints guarantees that no raw is over-used. The problem with this ILP-formulation
is that its linear programming relaxation gives very weak bounds.

Let K = ∑i dili/L be the total length of the rods demanded divided by the lengthof a raw.
Then⌈K⌉ is certainly a lower bound on the number of raws required. TheLP relaxation of the
ILP-formulation above gives no better bound. We exhibit a solution to the LP with objective

1

valueK. The idea is simply to useK rods (the first⌊K⌋ fully and the last one fractionally) and to
distribute the demand evenly over the rods. Letf = K −⌊K⌋. We set

z j =











1 for 1≤ j ≤ ⌊K⌋

f for j = ⌊K⌋+1

0 for j > ⌊K⌋+1

and for alli, xi j =
di

K
z j

Then

∑
i

lixi j = ∑
i

lidiz j/K = Lz j for all j

and

∑
j

xi j = di/K(⌊K⌋+ k) = (di/K)K = di for all i

1.3 The Greedy Heuristik

There is a simple heuristic for the cutting stock problem. Weconsider the rods to be cut in
arbitrary order. Assume that we have already produced some of the rods using some number of
raws. We will have leftovers from the raws already in use and we will have fresh raws. When we
have to cut a rod, we use one of the leftovers if there is a big enough leftover, and we will use a
new raw otherwise.

Lemma 1 The greedy strategy uses at most ⌊2K +1⌋ raws.

Proof: Number the raws in the order in which they are put into use and letG be the total number
of raws used. For a rawj, let w j be its unused part (= waste) and letu j be its used part. Then

u j +w j = L for 1≤ j ≤ G and ∑
j

u j = ∑
i

dili = KL .

When thej-th rod (j > 1) is put into use, the leftovers from the preceding raws are to short to
cut the rod under consideration. Thus

w j−1 ≤ u j for 1 < j ≤ G

Observe that this inequality holds when thej-th raw is put into use, and that wastes decrease and
used parts increase over time. Thus the inequality holds at the end. Thus

GL = ∑
1≤ j≤G

u j +w j ≤ wG +2 ∑
1≤ j≤G

u j ≤ L+2KL

and henceG ≤ 2K +1. SinceG is an integer we even haveG ≤ ⌊2K +1⌋.

2

1.4 An Alternative ILP-Formulation

The alternative formulation uses a large number of variables. A cutting pattern is any vector
p = (a1, . . . ,ak) of non-negative integers such that∑i aili ≤ L. There is in general an exponential
number of cutting patterns. Trivial cutting patterns cut only rods of one kind, i.e., there is ani
such thatai = ⌊L/li⌋ anda j = 0 for j 6= i.

Let P be the set of all cutting patterns. For a patternp let xp the number of times the pattern
p is used. The goal is to

minimize∑p xp subject tod = ∑p pxp, xp ≥ 0, xp integral.

As usual we obtain the LP relaxation by dropping the integrality constraint. The resulting LP has
an exponential number of variables (but onlyk constraints). The advantage of the alternative LP
over the natural LP is that it provides much better lower bounds for the underlying ILP.

We give a trivial example. Assume that we have raws of length 3and want to cut five rods of
length two. The lower bound tells us that we need at least fourrods.

There is only one cutting pattern: Use a raw to produce a single rod of length one and hence
we obtain the following ILP in a single variable.

minimizexp subject to 5= xp, xp ≥ 0, xp integral.

The ILP and LP relaxation have optimal value five. We invite the reader to work out a more
complex example.

We need to discuss two issues:

• How to solve the linear program?

• How to go from an optimal solution to the LP to an optimal solution of the ILP.

1.5 Solving the LP

Let P′ ⊂ P be a subset of the cutting patterns. Initially, we might takeP′ as the set of all trivial
cutting patterns. We solve the LP restricted to the variables inP′. The solution has a certain basis
B. Let AB be the matrix of cutting patterns in the basis. The cost vector is the all-one vector.
Pricing leads to the following question:

Is there a cutting pattern, i.e., a vectorp = (a1, . . . ,ak) of non-negative integers with∑i aili ≤
L, such that 1− uT p < 0, whereuT = 1T A−1

B and1 is the all-one vector? This is a knapsack
problem. We have a knapsack of capacityL andk different objects. Thei-th object has weightai

and valueui. The question is whether we can fill the knapsack (usingai objects of kindi) such
that the capacity of the knapsack is not exceeded, i.e.,∑i aili ≤ L and such that the value of the
knapsack exceeds one, i.e.,uT p = ∑i uiai > 1.

Let us go through an example. The example is trivial but illustrative. We have raws of length
4. We want one rod of length 1 and one rod of length 3. We start with the trivial cutting patterns
(1,0) and(0,1). ThenuT = (1,1). So we ask whether there area1 anda2 such that

1 ·a1+3 ·a2 ≤ 4 and a1 +a2 > 1.

3

This has solutions(2,0), (3,0), (4,0) and(1,1).
The knapsack problem is NP-complete, but not strongly NP-complete. Dynamic program-

ming usually works well for the knapsack problem.

1.6 Dynamic Programming for the Knapsack Problem

We assume that theli are integer. We fill a tableT with index set[0..L] such thatT [l] is the
maximal value of a knapsack whose weight is at mostl. We do first using only objects of type
one, then objects of type one and two,

Suppose we have only one kind of object. There is not much choice we have: Forl < l1 the
value is zero, i.e,T [l] = 0 for l < l1 and for l1 ≤ l ≤ L we can add one item of valueu1 to a
knapsack of weight at mostl − l1. ThusT [l] = u1+T [l− l1] for l ≥ l1.

Assume now that we considered the firstk−1 items and now consider thek-th item. We can
use it or not. Thus we should update theT -values according to the rule: Forl < lk leave the
T -value unchanged and forlk ≤ l ≤ L setT [l] = max(T [l],uk +T [l − lk]).

It is important to consider thel’s in increasing order (for (int l = l[k], l <= L;
l++)) in the update step to account for the fact that we may take thek-th item any number of
times. The initialization step is actually a special case ofthe update step. We could initializeT
with the zero-vector and then start withk = 1. The running time of dynamic programming for
the knapsack problem isO(kL). This is pseudo-polynomial.

1.7 Solving the ILP

The solution of the LP gives us a lower bound for the optimal solution to the ILP. It also allows
us to compute integer solutions.

The simplest way to obtain integer solutions is to round up the values of all variables. In this
way all demands are certainly satisfied.

Alternatively, we could round down. Consider any basic variablexp. We round it down and
use the cutting patternp, ⌊xp⌋ times. This will satisfy part of the demand (usually a large fraction
of it). We satisfy the remaining demand using the greedy heuristic.

If we are lucky the LP lower bound tells us that the solution obtained in this way is optimal.
If not, we use branching. We take one of the fractional variables, sayx, in the LP (one whose

value, sayβ is close to half-integral) and generate two subproblems. One with the additional
constraintx ≤ ⌊β⌋ and one withx ≥ ⌈β⌉.

2 General Cutting Plane Methods: Gomory Cuts

We show that ILPs can be solved by solving a series of linear programs.
Consider an integer linear program

max
{

cT x; Ax ≤ b,x ≥ 0,x ∈ N
n }

(ILP)

4

(3,0)(0,0)

(3/2,3/2)

(1,1) (2,1)

Figure 1: Consider the inequalitiesy ≤ x, y ≤ 3− x, x ≥ 0, y ≥ 0. The feasible regionP is
a triangle with vertices(0,0), (3,0), and(3/2,3/2). The boundary ofP is shown dashed.P
contains the integral points{(0,0),(1,0),(2,0),(3,0),(1,1),(2,1)}. They comprise the feasible
setFI of the integer program. The boundary of the convex hullPI of FI is shown in bold. It is
defined by the inequalitiesy ≤ x, y ≤ 3− x, x ≥ 0, y ≥ 0, andy ≤ 1.

Thelinear programming relaxation of ILP is obtained by dropping the integrality constraint. We
obtain the LP

max
{

cT x; Ax ≤ b,x ≥ 0,x ∈ R
n }

(LP)

Clearly, the maximal objective value of the LP is at least theobjective value of the ILP; the linear
programming relaxation provides an upper bound.

Let FI = {x; Ax ≤ b,x ≥ 0,x ∈ N
n} be the feasible set of ILP; observe thatFI is a discrete

set. The feasible region ofP = {x; Ax ≤ b,x ≥ 0,x ∈ R
n } of LP is a superset ofFI; it is a

connected subset ofRn. In principle, the optimization problem overFI can be formulated as a
linear program. The convex hullPI of FI is a convex set with vertices inFI. We could describePI

by a system of inequalities and then use this system to optimize, see Figure 4. The problem with
this approach is that

• the description could be big (= it might require a very large number of constraints to define
PI,

• the description could be hard to find,

• it would be overkill to find a complete description ofPI. We only need a linear description
in the vicinity of the optimal solution.

The idea of cutting plane methods is to add linear inequalities to the linear program as needed,
namely to cut off fractional solutions (hence the name). Theidea is simple. We call an inequality
aT x ≤ δ valid for ILP if aT x ≤ δ for all x ∈ FI. We have the following simple, but powerful
lemma.

5

Lemma 2 If a is integral and
aT x ≤ δ

is valid for ILP then
aT x ≤ ⌊δ⌋

is valid for ILP.

Proof: If aT x ≤ δ andx ∈ FI thenaT x ∈ Z and henceaT x ≤ ⌊δ⌋.

We next discuss Gomory’s method for finding valid inequalities of the formaT x ≤ δ with a
integral andδ fractional.

Let B be an optimal basis of the LP (we assume for simplicity that the LP is bounded) andx∗

be the corresponding optimal solution to the LP. Ifx∗ is integral, it is also an optimal solution of
ILP and we are done.

So assume thatx∗ is not integral. Then one of the basic variables, sayxi, has a fractional
value. Consider the corresponding row of the dictionary

xi = b̄i + ∑
j∈N

āi jx j . (1)

b̄i is a rational number which is not integral. For a rational numberβ let {β} = β −⌊β⌋ be the
fractional part ofβ . Then{b̄i} 6= 0. We split equation 1 into is integral part and its fractional
part and obtain

xi −⌊b̄i⌋− ∑
j∈N

āi jx j = {b̄i}+ ∑
j∈N

{āi j}x j .

For every feasible solution of our ILP the left hand side is aninteger (since the variables are
constrained to be integral) and hence the right hand side is integral for every feasible solution of
our ILP. Thus

E = {b̄i}+ ∑
j∈N

{āi j}x j ∈ Z

for every feasible solution of the ILP.
Let us take a closer look at this expression. We have{b̄i} > 0 sinceb̄i is fractional, we

have{āi j} ≥ 0 by the definition of fractional value and we havex j ≥ 0 since our variables are
constrained to be non-negative. ThusE > 0 for every feasible solution of our ILP. SinceE is
known to be integral, we even haveE ≥ 1. Thus

{b̄i}+ ∑
j∈N

{āi j}x j ≥ 1

for every feasible solution of our ILP. We may therefore add this inequality to the ILP and also
to its linear programming relaxation.

The addition of the new constraint has no effect on the ILP; wejust argued thatE ≥ 1 for
every feasible solution to the ILP. It does however have an effect on the linear programming
relaxation. Observe that in our current solution, we havex∗j = 0 for all j ∈ N and hence the

6

current LP-solution is cut off by the new constraint. For this reason, the new constraint is called
a cutting plane.

Let us look at an example. We have a ILP in two variables, sayx andy, we are trying to
maximizey and we have the constraints.y ≤ x andy ≤ 3− x. We add slack variabless andt
and obtain the linear programy + s− x = 0 andy + t + x = 3. An optimal solution to the linear
programming relaxation is(x,y,s, t) = (3/2,3/2,0,0). We use the fact thatx has a fractional
value to generate a cut. Solving forx in terms of the non-basic variabless andt yields

2x− s+ t = 3 or x =
3
2

+
1
2

s−
1
2

t .

Splitting into integral and fractional part gives us

x−1− t =
1
2

+
1
2

s+
1
2

t .

The right hand side is integral and positive for every feasible solution of the ILP and hence we
may generate the cut

1
2

+
1
2

s+
1
2

t ≥ 1 or s+ t ≥ 1

We may also interpret this constraint in terms ofx andy. Adding our two original constraints
gives 2y+ s+ t = 3. Together withs+ t ≥ 1 this impliesy ≤ 1.

The technique for introducing new constraints just described was invented by Gomory in
the late 50s and early 60s. It can be shown that if Gomory cuts are added in a careful way,
the LP will have an integral optimal solution after a finite number of iterations, see [?, Section
23.8]. The number may be large, however. It must be large in the worst case, since integer linear
programming is NP-complete.

I called this section general cuts, because it works forevery integer linear program. For
specific integer linear programs, one can also use problem-specific cuts. We will see an example
below in the section on the Traveling Salesman Problem. Problem-Specific Cuts are usually
much more effective than general cuts.

How does one resolve an LP after adding a cutting plane. We know it already (see Section??),
but it is worthwhile to review it. We introduced the constraint E ≥ 1 which is not satisfied by our
current basis solution. We add a non-negative slack variable s, the equations = E −1, and add
s to the basis. In this way we obtain a dual feasible basis (since we have not changed the cost
function) which we can take as the initial basis for phase II of the simplex method.

3 The Traveling Salesman Problem

Go through the chapter on the Traveling Salesman Problem in the book by Cook et al [?].

7

