Seidel's Randomized Linear Programming Algorithm

Kurt Mehlhorn
July 7, 2010

| describe Raimund Seidel's randomized linear programmnaiggrithm [Sei91]. It runs in
time O(d!m), wherem is the number of constraints amtdis the number of variables. When
discussing Seidel’s algorithm it is customary to dder the number of variables akis always
used for the dimension in computational geometry and théoddhas a strong geometric flavor.

We consider the problem of maximizing a linear funct@x subject tom linear constraints
a'x < bj, 1<i < m. We also assume for simplicity that we have explicit bountthe variables,
say—M < xj <M for 1 < j <d. The bound constraints are extra and do not belong to our
collection of linear constraints. We formulate the algamtas a recursive procedure.

LINPROG(m linear constraints il variablesd > 1)
if d=1then
do the obvious and return
end if
if m=0then
return the appropriate vertex of the bounding box, i.e.xpei Mifc; >0 andx}‘ =—-Mif
cj <O0.
end if
select one of the constraints uniformly at random,aay< b, and delete it.
call LINPROG recursively on the remaining— 1 constraints ird variables; letx" be the
solution returned.
if ax* <b, i.e.,x* satisfies the constraint removtn
returnx®;
end if
comment: the optimal solution must satis®/ x* = b
solvea’ x = b for one of the variables and remove this variable from allstaints.
call LINPROG recursively on the remainimg— 1 constraints ird — 1 variables (!!!!).
let X* be the vertex returned. Fill in the value of the variable grexgband return the extended
solution.

We have a closer look at the various stepsd K 1, we have a set ah inequalities in a
single variablex; some of them boung from above and some of them bouxdrom below. If
the upper bound is smaller than the lower bound, the proldanfeasible. Otherwise either the

upper or the lower bound is the optimal solution depending/beatherc tells us to maximize or
to minimize. The base cask= 1 takes timeO(m).

If d > 1 andm= 0, we have only the box constraints. We find the optimum sorfuita time
O(d).

If d > 1 andm > 1, we select one the constraints uniformly at random,&ay< b, and
remove it. We then call our procedure recursively on the rem@m— 1 constraints. This takes
time O(d) plusT(d,m— 1), whereT (d,m) is the yet to be determinestpected running time of
our algorithm onm constraints ird variables.

Let x* be the solution returned by the recursive call. There aredases: either we are
lucky andx* satisfies the constraint removed or we are unlucky and it doés In the first
case, we simply returr®. In the latter case, we observe that any optimal solutiont Isaissfy
the constrain&”x < b with equality. We solve the equatial x = b for one of the variables
and then remove the variable from all other constraints tststwtion. In this way we obtain
(m—1)+2=m+1 constraints ird — 1 variables; observe that the two bound constraints for the
eliminated variable give rise to two new constraints for dhe 1 remaining variables. We call
our procedure recursively on these constraints and obtaoluionxX* in d — 1 variables. We
compute the value of the variable dropped and in this wayiobBtafrom X*.

If we are unlucky, we spend tin@(dm) for eliminating a variable, tim& (d — 1, m+ 1) for
the recursive call, and tim@(d) for computing the value of the variable dropped.

What is the probability of being unlucky? If we are unluckyg tconstraint removed must be
one of the at modll constraints whose removal increases the optimum. Thusrtiepility of
being unlucky is at most/m. We obtain the following recurrence fard, m):

o(m) ifd=1
ifd>1andm=0.
+T(d,m—1)+ 3 (O(dm)+T(d—1,m+1)) ifd>1andm>1

Theorem 1 T(d,m) = O(d!max(1,m—1)).

Proof: LetC be a sufficiently large constant that covers the big-O tenmbe recurrence. We
use induction om and for fixedd induction onmand showT (d,m) < Cf(d)max(1,m—1) for
a yet to be determined functidn

Ifd=1,T(1,m) <Cm<Cf(1)max1 m—1)providedthatf (1) > 2. Observe that 2m&&, m—
1) > mfor all m.

If d>21andm=0,T(d,m)=0(d) <Cd <Cf(d)max1,m—1) provided thatf (d) > d for
all d.

We come to the induction step. Assumhe- 1. We first deal with the casa = 1 and then

with the casen > 1. Form=1,

T(d,1)=0

(d)+T(d,0) + %(O(dm)—l—T(d—l,Z))
(d+d+d?+df(d—1)max1,1))

(3d?+df(d—1))
f(d)max1,0)

provided thatf (d) > df(d — 1) 4+ 3d%. Form> 1,

<C
<C
<C

T(d,m) = O(d)+T(d,m—1) + s](O(dm)-i—T(d 1,m+1))

gCd+Cf(d)(m—2)+%(Cdm+Cf(d—1)m)
< C(2d?+ f(d)(m—2) +df(d—1))
provided thatf (d) > d f (d— 1)+ 2d?. We definef (1) =2 andf (d) =df(d—1)+3d?ford > 1.
Then
f(d) =3d?+df(d—1)
=3d*+d(3(d-1)°+ (d~1)f(d- 1))
= 3d%+d (3(d—1)*+(d— 1) (3(d - 2)*+ F(d - 2)))
= 3(d®+d(d—1)?+d(d—1)(d—2)24+d(d—1)(d—2)(d—3)?+d---2-1?)

2 (d-12 (d—2)?
_3d'<d' (d— 1)!+(d—2)!+"')

— O(d!)

since the serie§;~i2/i! is converging. 1

References

[Sei91] R. Seidel. Small-dimensional linear programming aonvex hulls made eadyiscrete
and Computational Geometry, 6:423-434, 1991.

