
Seidel’s Randomized Linear Programming Algorithm

Kurt Mehlhorn

July 7, 2010

I describe Raimund Seidel’s randomized linear programmingalgorithm [Sei91]. It runs in
time O(d!m), wherem is the number of constraints andd is the number of variables. When
discussing Seidel’s algorithm it is customary to used for the number of variables asd is always
used for the dimension in computational geometry and the method has a strong geometric flavor.

We consider the problem of maximizing a linear functioncT x subject tom linear constraints
aT

i x ≤ bi, 1≤ i ≤ m. We also assume for simplicity that we have explicit bounds on the variables,
say−M ≤ x j ≤ M for 1 ≤ j ≤ d. The bound constraints are extra and do not belong to our
collection of linear constraints. We formulate the algorithm as a recursive procedure.

LINPROG(m linear constraints ind variables,d ≥ 1)
if d = 1 then

do the obvious and return
end if
if m = 0 then

return the appropriate vertex of the bounding box, i.e., setx∗j = M if c j ≥ 0 andx∗j = −M if
c j < 0.

end if
select one of the constraints uniformly at random, sayaT x ≤ b, and delete it.
call LINPROG recursively on the remainingm− 1 constraints ind variables; letx∗ be the
solution returned.
if aT x∗ ≤ b, i.e.,x∗ satisfies the constraint removedthen

returnx∗;
end if
comment: the optimal solution must satisfyaT x∗ = b
solveaT x = b for one of the variables and remove this variable from all constraints.
call LINPROG recursively on the remainingm−1 constraints ind −1 variables (!!!!).
let x̂∗ be the vertex returned. Fill in the value of the variable dropped and return the extended
solution.

We have a closer look at the various steps. Ifd = 1, we have a set ofm inequalities in a
single variablex; some of them boundx from above and some of them boundx from below. If
the upper bound is smaller than the lower bound, the problem is infeasible. Otherwise either the

1



upper or the lower bound is the optimal solution depending onwhetherc tells us to maximize or
to minimize. The base cased = 1 takes timeO(m).

If d > 1 andm = 0, we have only the box constraints. We find the optimum solution in time
O(d).

If d > 1 andm ≥ 1, we select one the constraints uniformly at random, sayaT x ≤ b, and
remove it. We then call our procedure recursively on the remaining m−1 constraints. This takes
time O(d) plusT (d,m−1), whereT (d,m) is the yet to be determinedexpected running time of
our algorithm onm constraints ind variables.

Let x∗ be the solution returned by the recursive call. There are twocases: either we are
lucky andx∗ satisfies the constraint removed or we are unlucky and it doesnot. In the first
case, we simply returnx∗. In the latter case, we observe that any optimal solution must satisfy
the constraintaT x ≤ b with equality. We solve the equationaT x = b for one of the variables
and then remove the variable from all other constraints by substitution. In this way we obtain
(m−1)+2 = m+1 constraints ind−1 variables; observe that the two bound constraints for the
eliminated variable give rise to two new constraints for thed −1 remaining variables. We call
our procedure recursively on these constraints and obtain asolution x̂∗ in d −1 variables. We
compute the value of the variable dropped and in this way obtain x∗ from x̂∗.

If we are unlucky, we spend timeO(dm) for eliminating a variable, timeT (d −1,m+1) for
the recursive call, and timeO(d) for computing the value of the variable dropped.

What is the probability of being unlucky? If we are unlucky, the constraint removed must be
one of the at mostd constraints whose removal increases the optimum. Thus the probability of
being unlucky is at mostd/m. We obtain the following recurrence forT (d,m):

T (d,m) =











O(m) if d = 1

O(d) if d > 1 andm = 0

O(d)+T(d,m−1)+ d
m (O(dm)+T(d −1,m+1)) if d > 1 andm ≥ 1

.

Theorem 1 T (d,m) = O(d!max(1,m−1)).

Proof: Let C be a sufficiently large constant that covers the big-O terms in the recurrence. We
use induction ond and for fixedd induction onm and showT (d,m) ≤C f (d)max(1,m−1) for
a yet to be determined functionf .

If d = 1,T (1,m)≤Cm≤C f (1)max(1,m−1) provided thatf (1)≥2. Observe that 2max(1,m−

1) ≥ m for all m.
If d > 1 andm = 0, T (d,m) = O(d)≤Cd ≤C f (d)max(1,m−1) provided thatf (d)≥ d for

all d.
We come to the induction step. Assumed > 1. We first deal with the casem = 1 and then

2



with the casem > 1. Form = 1,

T (d,1) = O(d)+T(d,0)+
d
m

(O(dm)+T (d−1,2))

≤C(d +d +d2+d f (d −1)max(1,1))

≤C(3d2+d f (d −1))

≤C f (d)max(1,0)

provided thatf (d) ≥ d f (d −1)+3d2. Form > 1,

T (d,m) = O(d)+T(d,m−1)+
d
m

(O(dm)+T (d−1,m+1))

≤Cd +C f (d)(m−2)+
d
m

(Cdm+C f (d−1)m)

≤C(2d2+ f (d)(m−2)+d f (d−1))

≤C f (d)(m−1),

provided thatf (d)≥ d f (d−1)+2d2. We definef (1) = 2 andf (d) = d f (d−1)+3d2 for d > 1.
Then

f (d) = 3d2+d f (d −1)

= 3d2+d
(

3(d−1)2+(d −1) f (d−1)
)

= 3d2+d
(

3(d−1)2+(d −1)
(

3(d−2)2+ f (d −2)
))

= 3(d2+d(d −1)2+d(d −1)(d−2)2+d(d −1)(d−2)(d−3)2+d · · ·2 ·12)

= 3 ·d!

(

d2

d!
+

(d−1)2

(d−1)!
+

(d −2)2

(d −2)!
+ . . .

)

= O(d!)

since the series∑i≥1 i2/i! is converging.

References

[Sei91] R. Seidel. Small-dimensional linear programming and convex hulls made easy.Discrete
and Computational Geometry, 6:423–434, 1991.

3


