
Optimization Summer 2010

Lecture 9 — May 10
Lecturer: Julián Mestre

9.1 The assignment problem

The input of the maximum assignment problem is a complete bipartite graph (U, V,E)
with n vertices on each side of the bipartition and a cost function c : E → R+. An
assignment is a one-to-one mapping σ : V → U and its cost is defined as

cost(σ) =
∑
j∈V

c(σ(j), j).

The goal is to produce an assignment with maximum cost. In this lecture we will show a
combinatorial algorithm for this problem. Our algorithm is based on the following integer
linear program formulation:

maximize
∑
i∈U
j∈V

c(i, j) xij

subject to
∑
j∈V

xij = 1 ∀ i ∈ U∑
i∈U

xij = 1 ∀ j ∈ V

xij ∈ {0, 1} ∀ i ∈ U, j ∈ V

In this formulation setting xij = 1 corresponds to σ(j) = i. Now suppose we re-
lax the integrality constraints; that is, we replace xij ∈ {0, 1} with xij ≥ 0 (why not
0 ≤ xij ≤ 1?). Taking the dual of the resulting LP we get:

minimize
∑
i∈U

ri+
∑
j∈V

pj

subject to ri + pj ≥ c(i, j) ∀ i ∈ U, j ∈ V
ri, pj free ∀ i ∈ U, j ∈ V

Clearly the value of any feasible dual solution is an upper bound on the value of
a optimal fractional solution for the primal, which in turn is an upper bound on the
value of an optimal integral solution. We will develop an algorithm that produces an
assignment and a feasible dual solution with similar cost. This will allow us to argue that
our assignment is nearly optimal.

9.2 Maximum assignment via auctions

Our algorithm will regard one side of the bipartition as a set of bidders (U), and the other
side as a set of objects (V ) that the bidders would like to get. For each bidder-object pair

9-1



Opt Lecture 9 — May 10 Summer 2010

(i, j) ∈ E we interpret cij as i’s valuation of j. Therefore, under this new interpretation,
our goal is to come up with an assignment maximizing the overall happiness of the bidders.

The algorithm will maintain a partial assignment σ where some objects j ∈ V may
not be mapped; we denote this situation by σ(j) =⊥. We will also keep dual variables
pj for each j ∈ V , which we interpret as prices, and dual variables ri for each i ∈ U .

Algorithm 1 auction-mechanism(U, V,E,w, δ)

1. For each object j ∈ V , set pj ← 0 and σ(j) =⊥
2. Q← a set containing all the bidders U
3. while Q 6= ∅ do
4. i← some bidder from Q
5. j ← an object maximizing c(i, j)− pj
6. if σ(j) 6=⊥ then
7. add σ(j) to Q
8. σ(j)← i
9. ri ← c(i, j)− pj

10. pj ← pj + δ
11. return σ

Notice that the algorithm is parametrized by δ. We will do the analysis for a generic δ
and then choose a suitable value to get the desired result.

Lemma 9.1. The algorithm always terminates. In fact, the number of iterations is at
most n

(
cmax

δ
+ 1
)
, where cmax = max

(i,j)∈E
c(i, j).

Lemma 9.2. At any point during the execution of the algorithm, if bidder i /∈ Q then

i) i is assigned some object j (that is, σ(j) = i) such that ri + pj = c(i, j) + δ, and

ii) ri + pj′ ≥ c(i, j′) for all j′ ∈ V .

In particular, at the end, the algorithm has a feasible dual solution (r,p) and a nearly
optimal assignment σ because∑

i∈U

ri +
∑
j∈V

pj = cost(σ) + n δ.

Theorem 9.3. If all the edge cost are integral then running auction-matching with
δ = 1

n+1
solves the maximum assignment problem in O (n3cmax) time.

Proof: From Lemma 9.1 and our choice of δ we know that the algorithm runs for at most
O(n2cmax) iterations. Each iteration can be implemented in O(n) time, so the claimed
running time follows.

Since all edge costs are integral, any two assignment either have the same cost or
the differ by at least 1 unit. From our choice of δ we know that the cost of any other
assignment τ is no larger than the one output by the algorithm because the cost of τ
cannot be larger than the cost of the dual solution. �

9-2


