Algorithmic Game Theory Exercise Sheet 9

Exercise 1 (Theorem 15.8) For every $\gamma \leq 1$, a cost sharing game (\mathscr{A}, c) with transferable utilities has a non-empty γ -core if and only if for every balanced collection of weights λ , we have $\sum_{S \subset \mathscr{A}} \lambda_S c(S) \geq \gamma c(\mathscr{A})$.

Exercise 2 (Integrality Gap) Let G = (V, E) be an undirected graph and let $w : E \to \mathbb{R}_{\geq 0}$ be a non-negative weight function on the edges. A matching M is a set of edges no two of which share an endpoint; the weight of a matching is the sum of the weights of its edges. Let x_e be an indicator variable for edge e. The following ILP captures the matching problem:

maximize	$\sum_{e} w_e x_e$	
subject to	$\sum_{e \in \delta(v)} \le 1$	for all $v \in V$
	$x_e \in \{0,1\}$	for all $e \in E$;

here $\delta(v)$ denotes the set of edges incident on v. The corresponding LP is obtained by replacing the constraint $x_e \in \{0,1\}$ by $x_e \ge 0$. Let OPT_{ILP} be the objective value of ILP and let OPT_{LP} be the objective value of the corresponding LP. The purpose of this exercise is to show that the integrality gap of this LP is at most 3/2, i.e.,

$$OPT_{LP} \leq 3/2 \cdot OPT_{ILP}$$
.

- 1. Give an example where OPT_{LP} is larger than OPT_{ILP} .
- 2. Let $(x_e)_{e \in E}$ be an optimal solution of LP. Consider the graph G' = (V', E') where E' consists of all edges $e \in E$ with $0 < x_e < 1$.
- 3. Assume first that G' contains no cycle of even length.
 - Show that G' must consist of disjoint cycles of odd length.
 - Conclude that $x_e = 1/2$ for all $e \in E'$.
 - *Conclude* $OPT_{LP} \leq 3/2 \cdot OPT_{ILP}$.
- 4. Assume next that G' contains a cycle C of even length.
 - Show how to modify the solution $(x_e)_{e \in E}$ such that the objective value does not decrease and the number of edges in E' decreases by at least one.

Exercise 3 (submodular is equivalent to decreasing marginal cost) A function c mapping subsets S of \mathscr{A} to real numbers is submodular if for all sets S and T

$$c(S) + c(T) \ge c(S \cup T) + c(S \cap T).$$

$$(1)$$

A function *c* has the decreasing marginal cost property if for all $R \subseteq \mathscr{A}$ and all $i, j \in \mathscr{A} \setminus R$ and $i \neq j$

$$c(R \cup \{i\}) - c(R) \ge c(R \cup \{i, j\}) - c(R \cup \{j\}).$$

We assume $c(\emptyset) = 0$.

Exercise 4 (cut-values are submodular) Let G = (V, E) be an undirected graph. For a subset S of the vertices, let c(S) be the number of edges in G having exactly one endpoint in S. Show that the function c is submodular.

Exercise 5 (connection costs in rooted trees are submodular) Let T = (V, E) be a tree with root r and let w be a non-negative weight function on the edges. For a subset S of the vertices, let c(S) be the cost of the smallest tree connecting the vertices in $S \cup \{r\}$. This tree is the union of the paths from r to v for $v \in S$.

- Show that c is submodular.
- Let S ⊆ V. Characterize the cost shares ξ(i,S), i ∈ S computed by algorithm Submodular-CostShares?