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We discuss the paper Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue
by Buchbinder, Jain, and Naor [BJN07]. The paper contains a wealth of results. The many results
are a refinement of a basic result which we are going to treat.

The scenario is as follows. We have an on-line auction with n bidders and m items; i ranges
over bidders and j ranges over items. Each bidder i has a non-negative budget Bi. When an
item arrives, the bidders provide non-negative bids bi j. The mechanism assigns the item to one
or none of the bidders. The mechanism has to ensure that the bidders stay within their budget
limits, i.e., if Mi is the set of items assigned to i then ∑ j∈Mi bi j ≤ Bi. The goal of the mechanism
is to maximize the total revenue. The off-line version of the problem is captured in the following
integer linear program. The indicator variable yi j is one iff item j is assigned to i.

maximize ∑
i j

bi jyi j

subject to ∑
i

yi j ≤ 1 for all j

∑
j

bi jyi j ≤ Bi for all i

yi j ∈ {0,1}

Why don’t we require the bidders to adjust their bids to their left-over budget? Then we could
not formulate the off-line problem. So the bids are something like the value of item j to bidder i.
If this value changes over time, the model is inadequate.

As usual we obtain the linear programming relaxation by relaxing the integrality constaints
on the yi j’s to yi j ≥ 0. Upper bound constraints on the yi j’s are already part of the system and
therefore do not have to added.

The dual linear program has variables xi for the bidders and z j for the items.

minimize ∑
i

Bixi +∑
j

z j

subject to bi jxi + z j ≥ bi j for all i and j
xi ≥ 0, z j ≥ 0
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In an optimal solution to the dual, z j = maxi(1− xi)bi j. If budgets are unlimited (Bi = ∞ for
all i), any item can be assigned to the bidder i that bids highest for j. Then xi = 0 for all i and
z j = maxi bi j for all j in the optimal dual solution. If budgets are zero, no item can be assigned
and yi j = 0, xi = 1, and z j = 0 in optimal solutions. If the budgets are finite, the optima are
somewhere in between.

Question 1 Give intuitive interpretations for the xi and z j.

LPs of the format above are called packing LPs and covering LPs. In the primal, we are
trying to pack items into the budgets of the bidders subject to the constraint that items can be
packet at most once and budgets must be observed. In the dual, the task is to cover the bi j’s.

The authors came up with a very simple on-line algorithm that works well when

Rmax = max
i j

bi j

Bi

is small. The algorithm follows the primal-dual paradigm. It constructs an almost feasible inte-
gral primal solution and a dual feasible solution such that

objective value of almost feasible integral primal solution
= (1−1/c) ·objective value of dual feasible solution, (1)

where c = (1+Rmax)1/Rmax . Observe that c goes to e (=2.71. . . ) as Rmax goes to zero (if Rmax = 1,
c =
√

2, if Rmax = 1/3, c = 3
√

4/3, . . . ). In a post-processing step, the almost feasible integral
primal solution is converted into a feasible integral primal solution with

objective value of feasible integral primal solution
≥ (1−Rmax) ·objective value of almost feasible integral primal feasible solution.

(2)

Since the objective value of the dual feasible solution is at least the objective value of the optimal
dual feasible solution which in turn is equal to the objective value of the optimal fractional
primal feasible solution which in turn is at least the objective value of the optimal primal feasible
solution, we obtain:

Theorem 1 ([BJN07]) The on-line algorithms returns an integral feasible solution to the primal
whose objective value is at least (1− 1/c) · (1−Rmax) times the objective value of the optimal
integral feasible solution to the primal, i.e., the algorithm is (1−1/c) · (1−Rmax)-competitive.

We next describe the algorithm.

1. Initialize all xi to zero.

2. When item j arrives, let i maximize bi j(1− xi). If xi ≥ 1, leave j unassigned, set yi j = 0,
z j = 0, and leave all xi unchanged.
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3. Otherwise

• set yi j = 1, i.e., assign j to i.

• set z j = bi j(1− xi).

• update xi as follows:

xi = xi(1+
bi j

Bi
)+

bi j

(c−1)Bi

and leave the other x` unchanged.

4. After all items have arrived: let Mi be the items assigned to i. If ∑ j∈Mi > Bi unassign the
last item assigned to i.

The update rule for the xi shows some similarity to a savings plan. The current capital xi
grows by an interest rate of bi j/Bi and new capital bi j/((c− 1)Bi) is added. We should expect
some kind of exponential growth.

We come to the analyis. We prove:

• the dual solution is feasible.

• in any iteration:

increase of cost of primal =
c−1

c
· increase of cost of dual. (3)

• if ∑ j∈Mi ≥ Bi, then xi ≥ 1, i.e., before the last assignment of an item to i, i was within its
budget.

If j stays unassigned, bi j(1− xi) ≤ 0 for all i. Thus setting z j to zero, satisfies the dual
constraint for z j. Otherwise, we set z j to maxi bi j(1−xi) and hence satisfy the dual constraint for
z j. The xi’s do not decrease in the course of the algorithms and hence constraints stay true. This
takes care of the first bullet point.

If j is not assigned, the primal and the dual objective do not change. So assume that j is
assigned to i. The objective of the primal increases by bi j. The objective of the dual increases by

Bi∆xi + z j = Bi

(
bi jxi

Bi
+

bi j

(c−1)Bi

)
+bi j(1− xi) = bi j(1+

1
c−1

) =
c

c−1
bi j.

Thus the objective of the primal increases by (c− 1)/c times the objective of the dual in any
iteration. This takes care of the second item and establishes (1).

We turn to the third bullet point. Let Mi be the set of items assigned to i. Initially, Mi is
empty. Let V = ∑ j∈Mi bi j be the total value of the items in Mi. We show

xi ≥
1

c−1

(
cV/Bi−1

)
.
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Initially, xi = 0 and V = 0 and the claim holds. When V ≥ Bi, the right hand side is at least one
and we have achieved our proof goal. Assume now that some item j is assigned to i. Then V
grows to V +bi j and xi changes to

xi

(
1+

bi j

Bi

)
+

bi j

(c−1)Bi
≥ 1

c−1

(
cV/Bi−1

)(
1+

bi j

Bi

)
+

bi j

(c−1)Bi

≥ 1
c−1

(
cV/Bi

(
1+

bi j

Bi

)
−1
)

It therefore suffices to show (1 + bi j/Bi) ≥ cbi j/Bi or ln(1 + bi j/Bi) ≥ (bi j/Bi) · lnc. For x > 0
the function x 7→ ln(1+x)

x is increasing (compute the derivative) and hence it suffices to show
ln(1+Rmax)≥ Rmax · lnc. This holds by definition of c.

Before the last item is assigned to i, xi < 1 and hence the value of the items assigned to i up
to this point is at most Bi. Therefore undoing the last assignment if i’s budget is exceeded will
make the primal solution feasible. Let Mi be the items assigned to i before the postprocessing
step. The value of the items assigned to i after the postprocessing step is at least

∑
j∈Mi

bi j(1−Rmax).

This holds true if no element is unassigned. If an element is unassigned ∑ j∈Mi bi j ≥ Bi and the
unassigned item has value at most RmaxBi. This establishes (2) and completes the proof of the
theorem.

You may wonder where the update rule for the xi’s comes from? If we are aiming for equality
(3), the update rule is forced. Observe that the cost of the primal changes by bi j and the cost of
the dual changes by Bi∆xi + zi. If we aim for bi j = c−1

c (Bi∆xi + zi), we need to set

∆xi = (
c

c−1
bi j− z j)

1
Bi

=
1
Bi

(
c

c−1
bi j−bi j + xibi j) =

bi jxi

Bi
+

bi j

(c−1)Bi
.

The paper states that the approximation ration 1− 1/e is best possible. I have not checked
this claim.

The fact that the update rule leads to exponential growth is suggested by its similarity to a
savings plan.

Do we have to aim for (3)? We do not need it for every step, but we need it on average. At
any point in time, let si be the fraction of i’s budget that is spent at this point of time. Also assume
that we set xi to some increasing function f of si. We need f (0) = 0, because we initialize the xi
to zero, f (1)≥ 1, because we want that only one item needs to be removed in the postprocessing
step. Let b1, b2, . . . , bk be the values of the items assigned to i; I am suppressing the index i for
simplicity. We want

∑
j

b j ≥ α ∑
j
(Bi( f (s j)− f (s j−1))+(1− f (s j−1))b j)
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for α as large as possible. Here s j = (b1 + . . .+ b j)/Bi. Observe that the right hand side is the
increase in the dual objective. Next observe that s j = s j−1 + b j/Bi and b j/Bi ≤ Rmax ≈ 0. This
suggests to replace ( f (s j)− f (s j−1) by f ′(s j−1)b j/Bi, i.e., by the value of the derivative times
the step size. The right hand side becomes

α ∑
j
(Bi f ′(s j−1)b j/Bi +(1− f (s j−1)b j = α ∑

j
( f ′(s j−1)+1− f (s j−1))b j

≤ α max
j

( f ′(s j−1)+1− f (s j−1))∑
j

b j

≤∑
j

b j,

for the choice α = 1/max0≤s≤1( f ′(s)+ 1− f (s)). In other words, we need a function f with
f (0) = 0, f (1) = 1 and max0≤s≤1( f ′(s)+ 1− f (s)) as small as possible. Recall that we want a
large α .

We want to minimize max0≤s≤1( f ′(s)+ 1− f (s)). What are the functions f for which the
value f ′(s)+ 1− f (s) is constant, say β . The differential equation f ′(s)+ 1− f (s) = β has the
general solution f (s) = Ces +1−β . The condition f (0) = 0 forces C = β −1 and hence f (s) =
(β − 1)(es− 1). The condition f (1) = 1 forces (β − 1)(e− 1) = 1 and hence β = e/(e− 1).
Thus α = (e−1)/e = 1−1/e. This suggest that no better update rule exists.
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