Lecture 4

Number Types |

We will study arbitrary precision integers, rationals, €ixarecision floating point numbers, and arbitrary
precision floating point numbers. In later lectures, we Veilrn about algebraic expressions and general
algebraic numbers. We start out with a short discussion lwfrary precision integers and rationals. The
bulk of the lecture will be about floating point numbers.
Floating point numbers are of the form
s-m-2°

wheres is asign bit (—1 or +1), mis a non-negative number calledantissaand e is an integer called
exponent The number of digits available for the mantissa is eithaditall hardware floating point systems)
or arbitrary (most software floating point systems). Theoment either comes from a fixed range (hardware
floating point numbers and some software floating point sys}eor is arbitrary (some software floating
point systems). Already the first programmable computesretf floating point numbers. In 1938, Konrad
Zuse completed the "Z1”, the first programmable computewditked with 22-bit floating-point numbers
having a 7-bit exponent, 15-bit significant (including on®plicit bit), and a sign bit. The Z3, completed
in 1941, implemented floating point arithmetic exceptiongwepresentations for plus and minus infinity
and undefined. The first commercial computers offering fhggtioint arithmetic in hardware are Zuse's Z4
in 1950, followed by the IBM 704 in 1954. The IEEE standard-1985 [18] defines single and double
precision floating point arithmetic which is implementedhiardware on all modern processors. Floating
point arithmetic (hardware and software) is the workhomeall scientific and geometric computations
and therefore we need to study it carefully. The precediatgsient concerning the importance of floating
point computations seems to contradict the findings of Lre@@. It does not. In the preceding lecture, we
showed that a naive substitution of floating point arithmédr real arithmetic does not work. In the course
we will learn that the wise use of floating point arithmeticoise of cornerstones of reliable and efficient
geometric computingWe will teach you how to draw reliable conclusions from appraate arithmetic.

4.1 Built-In Integers and Arbitrary Precision Integers

Hardware and programming languages provide fixed precisitager arithmetic, usually in signed and
unsigned form. Letvbe the word size of the machine andret 2V. Most current workstations have= 32
orw = 64. The unsigned integers consist of the integers betwead @& 1 (both inclusive) and arithmetic
is modulom. The signed integers form an interv@lNINT ,MAXINT]. On most machines signed integers
are represented in two’'s complement. TRININT = —2%-1 andMAXINT = 2%-1 — 1. An arithmetic

1

nces??

2 LECTURE 4. NUMBER TYPES |

operation on signed integers may produce a result outsgleatige of representable numbers; one says
that the operation underflows or overflows. The treatmentefftow and underflow is not standardized, in
particular, it is not guaranteed that they lead to a runtimergin fact they usually do not. For example,
the additionMAXINT+ MAXINThas result-2 on the KM’s machine, since adding 0111 to itself yields
11...10, which is the representation e® in two’s complement.

Arbitrary integers are readily implemented in software, dgample, in packages [15] and [19, Class
Biglinteger]. The running time of addition and subtractisrlimear in the number of digits. All packages
implement some form of fast integer multiplication. Depiagdon the method used, the running time of
multiplication isO(L'°9%) or O(LlogL loglogL), whereL is the number of digits in the operands.

Exercise 0.1: The greatest common divisor of two integerandy with x >y > 0 can be computed by the
recursionGCDx,y) = x if y =0 andGCDx,y) = GCDy,x mody) if y > 0. Prove that the number
of recursive calls is at most proportional to the lengtlyoHint: Assumex >y and letx, = x and
xp =Y. Fori >1andx_1#0letx =x_» modx_i1. Letxx = 0 be the last element in the sequence
just defined. Relate this sequence to the gcd-algorithmwShatx,_; > 0 andx;_» > X_1 + X; for
I < k. Conclude thak_; is at least as large as theh Fibonacci number. &

Exercise 0.2: The standard algorithm for multiplying twio-bit integers has running tim@(L?). Karat-
suba’s method ([21]) runs in tim@®(L'°9%). In order to multiply two numbers andy it writes
X=x1-2"2 4 x; andy = y; - 252 +y», wherexy, X2, y1, andy, havel /2 bits. Then it computes
z= (X1 +X2)- (y1+Y2) and observes thaty = x; - y1 - 2 + (z2— X1y1 — XoY2) - 2/2 4 Xay». In this way
only three multiplications ok /2-bit integers are needed to multiply twebit integers. The standard
algorithm requires four. &

4.2 Rational Numbers

A rational number is the quotient of two integers. Additiordanultiplication of rational numbers are exact.
A rational is normalized, if numerator and denominator atatively prime. Normalization requires to find
the greatest common divisor of numerator and denominatwaa divisions to remove it. Normalization
is fairly costly. However, one should be aware that somerdlguos lead to non-normalized numbers and re-
quire normalization for efficiency. A prime example is Gaasslimination. Consider Gaussian elimination
of a 3x 3 matrix.

e

f) —

i

a
c
g

b b e
d d—b(c/a) f—e(c/a))
h h—b(g/a) i-e(g/a)

b e
(ad—bc)/a (af —ec)/a)
(ah—bg)/a (ai—eg/a

b e
(ad—bc)/a (af —ec)/a)

0 (ai—eg)/a— Eiﬂiﬂ?ﬁfi(af —eg/a

O 0O OO0OY OOV

4.3. FLOATING POINT NUMBERS 3

We now have a close look at the element in positi8s8). We have:

, (ah—bg)/a _ (ai—eg)(ad—bc) — (ah—Dbg)(af —eq)
(ai—eg)/a- (ad—bc)/a(af_ec)/a_ a(ad—bc)
_ all terms containing+ (egbc— bgeq
B a(ad — be) '

i.e., numerator and denominator contain the common faxtdf common factors are not cleared out in
Gaussian elimination, the length of the numbers grows expiadly in the dimension of the matrix. If
entries are kept in normalized form, Gaussian eliminatipalynomial [?].

The use of rational arithmetic is inefficient and should beided.

4.3 Floating Point Numbers

We start out with a definition of binary floating point systenWe explain the representation of numbers
and the key properties of floating point arithmetic. We mowndamderive error bounds for the evaluation of
expressions. We will use them extensively in the courseoftimized evaluations of geometric predicates in
this lecture, as the basis for an efficient linear kernel {lwex??), for the analysis of perturbation techniques
(Lecture??), as the computational basis for the exact evaluation @labgc expressions (Lectu?®) and,
more generally, arithmetic with algebraic numbers (Lex®#).

Hardware floating point arithmetic is standardized in thEEHloating point standard [16, 17, 18]. A
floating point number is specified by a sigra mantissan, and an exponerd. The sign is+1 or—1. The
mantissa consists afbits my, ..., m, ande is an integer in the rang@min, emay. The range of possible
exponents contains zero agg, = —oo and/oreyax = + is allowed.

TODO: doeseyin, = — really make sense? Thénis dense inR at 0. Check that all arguments stay
valid. TODO

The number represented by the tripgem, e) is as follows:

o If &min < €< €may the number is: (1+ 51 mi2‘i) - 28, This is called anormalizednumber.

e If e= eyin then the number is- zlgigth*‘Zemi"“. This is called ssubnormalnumber. Observe
that the exponent ismin+ 1. This is to guarantee that the distance of the largest saotalcmumber
(1—2742%in+1 and the smallest normalized numbef12?! is small.

e In addition, there are the special number® and 4+« and a symbol NaN which stands for not-a-
number. It is used as an error indicator, e.g., for the redwtdivision by zero.

Double precision floating point numbers are represented hit§. One bit is used for the sign, 52 bits for the
mantissat(= 52) and 11 bits for the exponent. These 11 bits are integpiatean integef < [0..2'1 - 1] =
[0..2047. The exponene= f —1023; f = 2047 is used for the special values and hesge= —1023 and
€max= 1023. The rules fof = 2047 are:

e If all m are zero and = 2047 then the number ise or —co depending ors.

e In f = 2047 and somay is non-zero, the triple represents NaN (= not a number).

?7?7?

?7?

4 LECTURE 4. NUMBER TYPES |

Let F = F(t, emin, €max) be the set of real numbers (includinge and—oo) that can be represented as above.
A number inF is calledrepresentablea number inR \ F is callednon-representable Observe that for
normalized numbers, the leading 1 is not stored. It is someticalled the hidden bit. The largest positive
representable number (except §oyis MAXF = (2—271) - 2%max, the smallest positive representable number is
MINg =27t 28mintl — p~t+emnt1 gnd the smallest positive normalized representable nUISMENNORME =

1. 28nint1 — 2emint1 \We define th@normal rangeof F as

[—MAXg, —MINNORMg | U [MINNORMg , MAX]

and thesubnormal ranges the open interval-MINNORMg, +MINNORMg). Observe that O lies in the sub-
normal range. Theangeof F is the closed interval-MAXg, +MAXg]. We requireMINNORMg < 2—t. This

guarantee®INY? > MINNORM .

Exercise 0.3: Specialize the definitions above to double precision flgghioint numbers. &

4.3.1 Rounding

F is a discrete subset &. For any reak, let! flu(x) be the smallest floating point number greater then or
equal tox and letfld(x) be the largest floating point number smaller than or equal ite.,

flux) =min{ze F | x<z} and fld(x) =max{zeF |z<x}.

If xis representabldlu(x) = fld(x) = x. If x > MAXg, flu(x) = 4+ andfld(d) = MAXg, and if 0< x < MINf,
flu(x) = MINg andfld(x) = 0.

Rounding a real numbexyields flu(x) or fld(x). There are several rounding modéounding away
from zeroyieldsflu(x) for a nonnegativex andfld(x) for a negativex. Rounding towards zergields fld(x)
for a nonnegativex andflu(x) for a negativex. Rounding to nearesyields flu(x) or fld(x) depending on
which number is closer tr. If both numbers are equally close, i.e= (flu(x) 4 fld(x))/2, the result of the
rounding has an even last bit in the mantissa. The lattermalkes the rounding deterministic; also there
is empirical evidence?] that “rounding to even” in the case of ties has superior cataonal properties.
Rounding to nearest is the default rounding mode in the IBB&dsird and we follow this convention. We
use f{x) to denote the result of roundingto the nearest floating point number. Xt MAXg, we define
fl(X) = o, and ifx < —MAXg, we define f{x) = —oo. The following theorem states that rounding of numbers
in the normal range incurs a small relative error.

THEOREM 1. If x € R lies in the normal range,
max(|x — flu(x)| , |x — fld(d)|) < 27 min(|x], [fld(x)|, [flu(x)|) 1)
and
x—fl(x)| <27 Tmin(|x|, [fl(x)]).)

If x| > MAXg, [x—fI(x)] <271 fl(x)].

Lflu stands for “float-up” andld stands for “float-down”.

4.3. FLOATING POINT NUMBERS 5

Proof. We may assume thatis positive. ThetMINNORMg < X < MAXg and hencex = m2® for somem and
ewith 1 < m< 2 andemin < € < emax If €= emax We have in additiom < 2— 2. The distance between
adjacent floating point numbers with exponeiig 2-1€. Also, min(|x|, |fld(x)], |flu(x)|) > 28. Thus

max(|x — flu(x)|, |x— fid(d)|) < 27" < 27 min(|x|, |fid(x)|, |flu(x)]).

The second claim follows frorx — fl(x)| < 27t=1*€, Finally, if [x| > MAXg, |fl(X)| = o and this implies the
third claim. O

For subnormal numbers, the relative error of rounding magrbérarily large. For example fox =
MINg /2 we have flx) = 0 and henceéfl (x) — x| = x. Relative tox, the error is 1, and relative to(X), the
error in+o. However, the absolute error is bounded.

LEMMA 2. Let xe R be in the subnormal range. Then
x—fl(x)| < 27t Lremntl — 2t =IMTNNORME .
Proof. The distance between subnormal floating point numberstigign1, O

The quantities 2' and 2t~ are so important that they deserve a name. Weecall2~! the precision
of the floating point system and= 2-'~1 the unit of roundoff

THEOREM 3 (Quality of Rounding Function)For any real x,

|x—fl(x)| < umax(|fl(x)| ,MINNORME) (3)

4.3.2 Arithmetic on Floating Point Numbers

Arithmetic on floating point numbers is only approximateniturs roundoff error. Although floating point
arithmetic is inherently inexact, the IEEE standard gutes that the result of any arithmetic operation is
close to the exact result, frequently as close as possititeinhportant to distinguish between mathematical
operations and their floating point implementations. Wed@ase), ®, and® for the floating point imple-
mentations of addition, subtraction, multiplication aridiglon, respectively. Only in this lecture, we use
1/2 for the square-root operation aryzt for its floating point implementation. Generally, we uséof the
floating point implementation of. The floating point implementations of the operatigns—, -, /, and/2
yield the best possible resulthis is an axiom of floating point arithmetic.

DEFINITION 1. If x,y € F ando € {+,—,-,/} then
x3y=fl(Xxoy)

and

VX = fl(x/?).

As an immediate consequence of this definition and Theorera Ghtain:

6 LECTURE 4. NUMBER TYPES |

THEOREM4 (Error Bound for Single Operations)f x,y € F ando € {+,—,-,/} then

X3y —xoy| < umax|x3y|,MINNORMg) 4)
[xoy| < (1+u)max(|x3y|,MINNORME) (5)
‘\/i—xl/z‘ <umin(x/?,v/x). (6)
X2 < (14 u)yx @

VX< (1+u)xt2)

Proof. Inequality (4) follows immediately from Theorem 3 and inality (5) is a short calculation.
IXoy| < |Xoy—x3y|+ [x3y| < umax(|x3y|,MINNORMEg) + [X3Y| < (14 u)max(|x3y|,MINNORME).

Inequality (6) certainly holds ik = 0 and hence/? = \/x = 0 or if x= +c and hence/? = /X = .
If x> 0, and hence& > MINF, we havex/2 > MINNORM¢ and hence/x > MINNORMg. Inequality (6) then
follows from (2). Inequalities (7) and (8) are immediate sequences of (6). O

Observe that the floating point operations ©, ®, @ and ,/ must return the exact result if this is
representable. This is too much to ask for more complex tipardor example logarithms or exponentials.
There one requires that the implementation either retimmgxact result (if representable) or one of the two
adjacent floating point numbers.

We will also need the following properties.

(a) Floating point arithmetic is monotone, i.e.,aif < a) andb; < b, thena; G a, < b; & h, and if
0<a <ayand 0< by <b,thenay ®ax, < by ® by.

(b) Multiplication by a power of two incurs no roundoff errae., ifa € F is a power of twob € F and
2aandabare in the range df, thena®a=2-aandacb=a-h.

(c) If a+bis representable, themd b =a+ b and ifabis representabla® b = ab.
(d) If xe N, x < 21 andt < e < emay thenx2® is representable.
The IEEE standard also defines the results for “strange” amatibns of arguments. Of course, division

by zero yields NaN. Also, if one of the arguments of an additioNaN or the addition has no defined result,
e.g.,—% + oo, then the result is NaN.

Exercise 0.4: Leta,b € F with % < 8 < 2. Showthahob=a—b. This was first observed by Sterbenz [27].
¢

Exercise 0.5: Assume for this exercise that point coordinates are doublgs2, 1]. Show

Orientation(p,q,r) = O impliesfloat orient(p,q,r) = 0.

float orient(p,q,r) # 0 impliesOrientation(p,q,r) = float orient(p,q,r).

What does this mean for a figure such as Figtire

Can you find examples as in Secti@R when point coordinates are restricted to doubles in
[1/2,1]?

o

4.4. AN OPTIMIZED EVALUATION ORDER FOR THE ORIENTATION PREITATE 7

4.3.3 Floating Point Integers

We briefly discuss the use of double precision hardware figatbint arithmetic for 53-bit integer arith-
metic. Let us call an integerfioating point integeiif it belongs to the interval := [— (253 —1)..25% — 1].
The numbers in can be represented as double precision floating point nieni@ansider a non-negative
integerx = zo§i§53x52‘ €l. If x=0, xis a double. Ifx> 0, let] be maximal such that; # 0. Then
x= (14 ¥1<i<jXj-i2"")2) and henceis a double. Double precision floating point arithmetic omiers
in | is exact.

LEMMA 5. Assume x |,y €l and xoy € | whereo € {+,—,-}. Then»y=Xxoy.
Lemma 5 is useful if points have integer Cartesian or homeges coordinates of bounded size.
LEMMA 6. Assume that points have integral Cartesian coordinategnTh
(bx—ax) - (cy—ay) — (by—ay) - (cx—a)

is computed without roundoff error if the absolute value bfcaordinates is bounded b§- — 1, where
2(L+1)+1<583

Proof. The absolute value of the expression is strictly bounded by
(2L +2L) . (2L +2L) + (2L +2L) . (2L +2L) — 22L+3.
Thus if L + 3 < 53, the value is in and hence computed correctly. O

Exercise 0.6: Prove an analogous lemma for the orientation predicate aimtispwvith integer homogeneous
coordinates and for the side-of-circle predicate and paivith integer Cartesian or homogeneous
coordinates. &

Built-in 32-bit integer arithmetic can only handle integevhose absolute value is bounded By-21.
So it supports the orientation predicate for integer cowtdis with at most 14 bits. In contrast, doubles sup-
port the orientation predicate for integer coordinate$wit to 25 bits. One may paraphrase this observation
asdoubles are the better ints

4.4 An Optimized Evaluation Order for the Orientation Predi cate

TODO, Chee’s note are a good source.

4.5 An Error Analysis for Arithmetic Expressions

We study the evaluation of simple arithmetic operationsaatfhg point arithmetic. Any real is an arithmetic
expression and i andB are arithmetic expression, then #e B, A—B, A-B, andAl/2, The latter assumes
that the value ofA is non-negative. For an arithmetic expressidnlet E the result of evaluatinge with
floating point arithmetic. We want to bound

|E—E]|.

8 LECTURE 4. NUMBER TYPES |

E condition E Mg de

a | ais non-representable fl(a) max(MINNORMg, |fl(a)]) 1

a ais representable a max(MINNORMg, |a|) 0
A+B A®B ma® Mg 1+ maxda,dg)
A-B AcB ma & Mg 1+ max(da, dg)
A-B A®B | maxMINNORMg,ma®mg) | 1+da+dg
Al/2 A <umy 0 24D/2, /i 2+da
AL/ A > umy VA max(VA my @ VA) 24da

Table 4.1: The recursive definition of= andindg. The first column contains the case distinction according
to the syntactic structure &, the second column contains the rule for compuftnand the third and fourth
columns contain the rules for computing andindg; ¢, ©, ®, and® denote the floating point implemen-
tations of addition, subtraction, and multiplication, qyrddenotes the floating point implementation of the
square-root operation. Observe th@t = o if either my = co or mg = oo,

Such a bound can be used to draw a reliable conclusion abmsigh of an expression, because
[E-E|<B and |E|>B implies sigr(E) = sign(E).

This observation is very important. It shows that we may be &b determine the sign of an expression
with floating point arithmetic although it might be impodsitio determine its value with floating point
arithmetic.

We will derive a bound of the form

|[E—E|<B where B=((1+u)%* —1)-me < (dg +2) UG mg,

anddz andme are defined in Table 4.1. The intuitive interpretation isa@®ivs: mg upper bound& and
de measures the levels of rounding. The operaters-, and- introduce one additional level of rounding,
the square-root-operator accounts for two levels. In aitiaddthe arguments contribute the maximum of
their levels, and in a multiplication, the arguments cdmii® their sum. Each level of rounding increases
the range of uncertainty by a multiplicative factor of k. The subtraction of a1 reflects the fact that we
are interested in the error.

Before we establish the error bound, we will show tf@t+ u)? — 1) is approximately equal tdu and
we will also give an example.

LEMMA 7. Ifd < y/1/u—1then((1+u)¥—1) < (d+1)u. Foralld, ((1+u)?—1) > du.

Proof. We have

(1+u)f-1= > (?)u‘g_zl(d-u)i:du/(l—du).

Next observe thadu/(1—du) < (1+d)uiff d/(1—du) < (1+d)iff d<d+1—d?u—duiff d(d+1) <
1/u. This is certainly the case whéd +1)> <uord < y/1/u— 1. The lower bound follows immediately
from the expansion ofl + u)q. O

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 9

The conditiond < \/1/u — 1 is hardly constraining. Fan = 2753, it amounts tod < 226°, As an
example, we use the orientation predicate for padnts andc given by their Cartesian coordinates. Then

Orientation(a,b,c) = (by—ay) - (cy—ay) — (by —ay) - (cx — ax).

We compute thel-value of this expression. The degree of any argument istbaelegree ofby — ay) is 2,
the degree ofby — ax) - (¢, — &) is 5 and the degree of the entire expression is 6. We conchadétte error
of evaluatingOrientation(a, b, c) with floating point arithmetic is at most

7-U-Moyrientation(ab.c)-
This bound is worth to be formulated as a Lemma.

LEMMA 8. If points are given by their Cartesian coordinates and thiemtation predicate is computed by
the formula above, the roundoff error in a floating point exatlon is bounded by - u - Morientation(

(8® U® Myyientation(ab.c))-

Lemma 8 leads to the following code for evaluation of the maéon predicate. We assume that the
Cartesian coordinates belong to some number typdor which we have exact arithmetic available. We
first convert all coordinates to a floating point number anehtlevaluate the orientation precision with
floating point arithmetic. If the absolute value of the flagtipoint result is sufficiently big, we return its
result. If it is too small we resort to exact computation.

ab,c)

int orientation(point_2d p, point_2d g, point_2d r){

NT px = p.xcoord(), py = p.ycoord(), gx = g.xcoord(), ;

/[evaluation in floating point arithmetic

float pxd = fl(px), pyd = fl(py), gxd = fl(gx), ;

float Etilde = (gxd - pxd) *(ryd - pyd) - (qyd - pyd) *(rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), agxd = abs(gxd), ;
float mes = (agxd + apxd) *(aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 8 * Uu * mes) return (sign Etilde);

/I exact evaluation

NT E = (gx - px) *(ry - py) - (aQy - py) *(rx - px);

return sign E;

}

Exercise 0.7: Assume that a poinp is given by its homogeneous coordinatgss, py, pw). Assuming
sign(aw- bw- cw) = 1, we have

Orientation(a,b,c) = aw- (bx- cy— by- cx) — bw- (ax-cy— ay- cx) + cw- (ax- by— ay- bx).
Compute thel-value of this expression. &

Exercise 0.8: Assume that for, 1 <i < 8, is an integer withx;| < 220 Evaluate the expressidiix; +
X2) - (X3 +X4)) - X5 + (X6 + X7) - Xg With double precision floating point arithmetic. Derive aubd for
the maximal difference between the exact result and the atedpesult. &

THEOREM 9 (Error Bound for Arithmetic Expressions)t mg and d= are computed according to Table 4.1
then
me > MINNORMg and ng > |E| and |[E—E|<((1+u)%®-1)-me

10 LECTURE 4. NUMBER TYPES |

Proof. We use induction on the structure of the expres&ornThe claimsmg > MINNORMg andmg > \E|
follow immediately from the table and the monotonicity ofdtmg point arithmetic. For the third claim we
have to work harder. We use induction on the structuré ahd start by observing that the claim is obvious
if me = 0. The base case is obvious.Hf= a anda is representabléc = E. If ais non-representable we
invoke Theorem 3.

For the induction step we make a case distinction accordittgetoperation combining andB. Assume
first thatE = A+ B. Then

[E-E|=|A0B- (A+B)| < |A@B— (A+B)|+|A-A|+|B-B|.
Inequality (4) bounds the first term lymax(|A@ B| ,MINNORMg). Next observe that
max(|A@ |§| ,MINNORMg) < max(ma @ Mg, MINNORMg) = max(mg, MINNORMg) = Mg

by monotonicity of floating point arithmetic and sincg > MINNORMg. For the other two terms we use the
induction hypothesis to conclude

A—Al+[B—B| < ((1+u)* 1) -ma+ ((1+u)%®—1)-mg
< (14 u)made) _1). (mp+ mg)
< ((1+u)"@%%) _1). (14 u)-me by inequality (5)
Putting the two bounds together we obtain:
|E—E| < [u+((1+u)™d) _1). (14 u)]-me
= [(14 u)Trmaddads) _ 1) mg,

Subtractions are treated completely analogously.
We turn to multiplicationsg = A- B. We have

E-E|=|A0B-A-B|<|A0B-A-B|+|A-B-A-B|+|A-B-A-B|.
Inequality (4) and monotonicity of floating point arithmmeebiound the first term by
umax|A® B
For the second term we use the induction hypothesis to coaclu
A-B—A-B) = |A—A| |8
< (4w —1)-may-mg
< ((1+u)% —1)- (14 u) - maxma ® mg,MINNORM) by inequality (5)
= ((L+wh—1)- (1+u)-me,
and for the third term we conclude similarly
|A-B—A-B|=|A|-|B—B|
< (|A[+|A-A|)-|B-B|
(1+u)% - ma- ((1+u)%—1)-mg
(1+u)%. ((1+u)% — 1) - max(ma ® mg, MINNORM) by inequality (5)
= (A+u)H (1+u)®—1)-me

,MINNORMg) < umaxma ® mg,MINNORMg) = UMg.

VAR VAN

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 11

Putting the three bounds together, we obtain
[E—E|[<(u+(1+u) (1+u)* 1)+ (1+u) % (1+u)® —1))me
= (U+ (14 u)R 1 —u (1 Uyt (14Ut me
— ((l—l— u)l+dA+dB o 1)mE
and the induction step is completed for the case of mulaghos.

We finally come to square rootl, = A2 We distinguish cases according to the relative sizA afd
ma. Assume first thad is tiny compared tana, formally, A< u-ma. We sete = 0. Then

- -
< (|A]+|A-A]Y2
< (u-ma+ ((1+u)% —1).-ma)Y?
<(U+(A+uwR—1)Y2(14u)- /M by inequality (7)
< ((L+u)W2—1). /mauY?,
where the last inequality uses

(U+((L+ W% =121 u) = [(u+ (L +u)™ - 1) (L+u)?H?
(l+u)dA+2)1/2
u(da+3))*2
u(da+2))u/?

(1+ u)dA+2 o 1)U_1/2.

VAN VAN

[
(
(
<(
(

IN

Assume next thah > u-ma. Then

(\//_S—Al/z(< ‘\/K—Al/z‘ n (Al/z—Al/z(

A—A o
< —— 1
u- \/K+ K12 A2 by inequality (6)
(L+u)% —1)-mq
<u-VAs GFU
<u- VA4 ((1+u)— 1)(1+u)-% by inequality (8)

<u-VA+ ((1+u)®* —1)(1+u)? - maxma @ VANMINNORME) by inequality (5)
< (Ut (1+u)% — 1)(1+u)?) - maxma @ VA, v/A MINNORM)
= (1+u*2- 1) maxmo VA VA),

where the last inequality follows froM > 0 and hence/A > MINNORMg. This completes the induction step
for the case of square roots. O

THEOREM10. If dg < /1/u— 1then
‘E—E‘ S(dE+l)-U-mE§(dE+2)®mE@U.

12 LECTURE 4. NUMBER TYPES |

X X Cx kx dy
a fl(a) 1 1 1
A+B | ADB | catcs | maxka,kg) | 14+ maxda,ds)
A—B | AcB | catcs | maxka,kg) | 14+ maxda,ds)
A-B | AGB| cacs K+ kg 1+ da+dg

Table 4.2: The recursive definition of, kx anddy. The first column contains the case distinction according
to the syntactic structure of, the second column contains the rule for compufthgnd the third to fifth
columns contain the rules for computing, kx, anddy.

Proof. Follows immediately from Theorem 9 and Lemma 7. O

Exercise 0.9: Consider the computation ofi according to Table 4.1. Show that the rule for square roots
cannot lead to overflow (fnax>t +1). Give examples, where the rules for addition, subtractmd
multiplication overflow.

Answer: We haven, < (2— 1/2)2%, There are two rules for computirg= mu2. If A< uma,
we definemg = 2t+1/2© /ma. The square-root operation cannot overflow; if the multgtion
overflows we certainly have/ma > 28na(t+1/2 or my > 228max(t+1) 5 28nax g contradiction. If

A > umy, we defineme = max(VA, ma@ VA). SinceA < ma, the computation of/A cannot overflow.
Also, sinceA > uma, VA > u/2. /ma and hence

ma® VA) < mao uY2, /M < 2:9/2(1 4 u)3, /ia

and we already shown that the latter quantity does not overflo &

4.6 A Simplified Error Analysis for Polynomial Expressions

The error bounds of the preceding section are for machinsuroption and not for human consumption.
They should be used to filter the evaluation of geometricipagels. For the analysis of perturbation methods
in Lecture??a weaker and simpler bound suffices. We next derive such addoupolynomial expressions,
i.e., expressions using only additions, subtractions,raunliiplications. We show that

|E—E| < ((1+u)% - 1)ceM*,
wheredg, ce andkg are defined as in Table 4.2 ahtis the smallest power of two such that
M > max(1,max{lf(|a|) | ais an operand iiE}).
Exercise 0.10: ProveM > flu(|a|) for all operands in E. &
THEOREM11. Let M be defined as above. Then for every subexpression X of E,

cx>1 and k>0 and [X—X|<((1+u)®—1)cxM*,

4.6. A SIMPLIFIED ERROR ANALYSIS FOR POLYNOMIAL EXPRESSIOS! 13

where &, kx and & are defined as in Table 4.2. This assumes tha ' is representabfefor all X. The
latter assumption also guarantees that the computatioroafin overflows.

Proof. We use structural induction. Observe that the rulesifoare the same as in Theorem 9. It therefore
suffices to prove

mx < cxM

for all X. This is clear for operands. X = a € R, my = maxMINNORMg,fl(a)) < M. Consider an addition
or subtraction next. Then

My =Ma@ Mg < CAMKA@CBMKB < Caka @CBMKX = (CA—I-CB)MKX = C)(ka,

where the next to last equality follows from the assumpttuat ¢xM** is representable. Finally, we come
to a multiplication. Ifmy = MINNORVMg, the claim is obvious sinc®l > 1, ky > 0 andcx > 1. So assume
My = Ma© Mg. Then

My = Ma © Mg < cAM* © cgM*® = (cacg)MM* = cym*,

where again the next to last equality follows from our assiimnpthatcx M** is representable.
Finally, since 0< my < cxM and the latter quantity is assumed to be representablepthputation
of my does not overflow. O

We continue our discussion of the orientation predicateptontsa, b, andc given by their Cartesian
coordinates. Then

Orientation(a, b, c) = sign((bx — ax) - (cy — ay) — (by —ay) - (cx — ay)).

We already determined the degree of this expression as 6.c-Taed k-values are as follows. For any
argument, both values are one, ¥ b, — ay, we havecy =2 andkx = 1, for X = (b —ay) - (cy — ay), we
havecyx = 4 andky = 2, and finally for the entire expression we haye= 8 andkx = 2. We conclude that
the roundoff error in evaluatin@rientation(a, b, c) with floating point arithmetic is at most

7-u-8-M?=56.-u-M>2.

whereM is the smallest non-negative power of two bounding all Gaattecoordinates. In particular,M =

210 and double precision arithmetic is used, the error is at B2 >3- 220 < 2-27_ Next recall that the ex-
pression underlyin@rientation is twice the signed area of the triandiéa, b, c). Thus, if coordinates are at
most 29 and the (unsigned) areafa, b, c) is at least 225, thenfloat_orient(a, b, c) = Orientation(a, b, c).
Sofloat.orient errs only for very skinny triangles. FiguR® suggested this, but now we know for sure. We
will exploit the correctness dfoat orient for non-skinny triangles in Lecture?.

Exercise 0.11: Redo the analysis above for points given by their homogeneoardinates. We continue
our discussion of the orientation predicate for points igitag their homogeneous coordinates. As-
suming sigraw, bw;cw) = 1, we have

Orientation(a,b,c) = aw- (bx- cy— by- cx) — bw- (ax-cy— ay- cx) + cw- (ax- by— ay- bx).

2This is certainly the case @ < 2!*1 andMKx < 28max,

14 LECTURE 4. NUMBER TYPES |

We already determined the degree of this expression as 8&-Emelk-values are as follows. For any
argument, both values are one, ¥ bx: cy, we havecx = 1 andkx = 2, for X = (bx- cy— by- cx),
we havecy = 2 andkx = 2, for X = aw- (bx- cy— by-cx) we havecy = 2 andkx = 3, for X = aw- (bx-
cy— by-cx) — bw- (ax-cy—ay- cx) we havecx = 4 andky = 3, and finally for the entire expression
we havecx = 6 andkx = 3. We conclude that the roundoff error in evaluat@gentation(p,q,r)
with floating point arithmetic is at most

9.u-6-M3=54.u-M3.

whereM is the smallest non-negative power of two bounding the albsalalue of all arguments. In
particular, ifM = 210 and double precision arithmetic is used, the error is at Bbg53. 230 < 2-17,
If, we increase mantissa length to 99, the error bound bes@rfé. &

Exercise 0.12: Assume that for, 1 <i < 8, x is an integer withx;| < 220, Evaluate the expressidix; +-
X2) - (X3+X4)) - Xs + (X6 + X7) - Xg With double precision floating point arithmetic. Derive aubd for
the maximal difference between the exact result and the atedpesult. &

Exercise 0.13: Extend Theoren?? to include square-roots. This requires to extend TaBland the proof
of the theorem. We do not have a satisfactory answer for Recese. &

4.7 A More Precise Error Analysis
[[I' will probably move this section to the chapter on decglihe sign of algebraic expressions.]]

Consider the expression
E=(a+b)—a

whena > b. The error analysis of Section 4.5 assumes that the errbeisubtraction may be as large as
ume ~ u(2a+b).
However, the actual error is approximately
u-E~u-b,

which is much smaller. Can we improve our error analysis?alRear formulae for estimating the error in
additions (subtractions) and multiplications. We asg- to denoteE — E. ForE = A+ B, we have

errg = |A@B— (A+B)| < |A@B— (A+B)|+ |A- A+ |B—B]
<ulA®B|+|A-A|+|B-B| <uo|E|+erma+errg).
and forE = A- B, we have
lerre| = |A©B-A-B|=|A0B-A.-B+A-B-A-B+A-B-A-B|
<ulAoB|+|A-A|-|B|+|A|B-B|
< ulE|+|erra|-|B|+|Al- |errg|

These error bounds are more costly to evaluate than the boar&ection 4.5. We will use them in Chap-
ter ??2.

4.8. ARBITRARY PRECISION FLOATING POINT NUMBERS 15

4.8 Arbitrary Precision Floating Point Numbers

In Section 4.3, we introduced the floating point syste(h emin, émax). Software floating point systems are
usually more flexible. They allow the user to changkiring the computation, either by setting it to a fixed
value at the beginning of the computation or by changingeilfy during a computation. For some value,
one wants a mantissa length of 1000 bits, and for anotheeyahe wants 2000 bits, and for another value,
one wants no rounding Exponents are arbitrary integer, i.€min = — andemax= +%. The systems also
support the different rounding modes of the IEEE standaite ode can either be chosen for the entire
computation or for a single operation.

As an example, consider the following LEDA program snipg@nputing an approximation of Euler's
numbere~ 2.71. Letmbe an integer. Our goal is to compute a bigfloatich thatz—e| < 2~™. Euler’s
number is defined as the value of the infinite sefigsp1/n!. The simplest strategy to approximagés to
sum a sufficiently large initial fragment of this sum with dfsuently long mantissa, so as to keep the total
effect of the rounding errors under control. Assume that ar@pmute the sum of the firsiy terms with a
mantissa length dfbits for still to be determined values of andt, i.e., we execute the following program.

bigfloat::set_rounding_mode(TOZERO);
bigfloat::set_precision(t);
bigfloat z = 2; integer fac = 2; int n = 2;
while (n < n0)
{ /l fac = n! and z approximates 1/0! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * N,

}

Let z9 be the final value of. Thenz, is the value ofy,,_, 1/n! computed with bigfloat arithmetic with
a mantissa length d@fbinary places. We have incurred two kinds of errors in thimgotation: a truncation
error since we summed only an initial segment of an infinitéeseand a rounding error since we used
floating point arithmetic to sum the initial segment. Thus,

le—2z| < |e— 1/nl| + 1/n —2z
ﬂ;]o n;lo
= > In+| > 1/nl -2
n>ng n<ng
The first term is certainly bounded by ! since, for alln > ng, n! =ng! - (Ng+1)-...-n>np! - 2"~ and

hencey n>n, 1/nf <1/ng! - (1+1/2+1/4+...) < 2/ng!. What can we say about the total rounding error?
We observe that we use one floating point division and ondrilgabint addition per iteration and that there
areng — 2 iterations. Also, since we set the rounding mode to rowgittirzero, the value of always stays
below e and hence stays bounded by 3. Thus, the results of all bigilmeriations are bounded by 3 and
hence each bigfloat operation incurs a rounding error of &t ®@. Thus

le— 20| <2/ng! +2ny-3-27%,

3Additions, subtractions, and multiplications are exactdfrounding is performed and mantissas are allowed to hbieay
length.

16 LECTURE 4. NUMBER TYPES |

We want the right-hand side to be less thar®2!; it will become clear in a short while why we want
the error to be bounded by 2~ and not just 2™. This can be achieved by making both terms less than
2-™=2_ For the first term this amounts tg/®! < 22, We chooseay minimal with this property and
observe that if we use the expressi@a.length()| < m+ 3 as the condition of our while loop then this
no will be the final value ofn; fac.length() returns the number of bits in the binary representatiofaaf
Fromng! > 2" and the fact thanhg is minimal with 2/ng! < 2-™-2 we concludeny < m+ 3 and hence
Bnp2~t < 6(m+3)-27t <27M2if t > 2m; actually,t > m-+log(m+-3) +5 suffices. The following program
implements this strategy and computgsvith e — zp| < 2-™1,

We could outputz, but zy is a number with h binary places and hence suggests a quality of approxi-
mation which we are not guaranteeing. Therefore, we ragmal the nearest number with a mantissa length
of m+ 3 hits. Sincez < 3 this will introduce an additional error of at most3 ™3 < 2-™1 \We conclude
that the program below computes the desired approximafi&@uler's number.

bigfloat::set_precision(2 *m);
bigfloat::set_rounding_mode(TOZERO);
bigfloat z = 2; integer fac = 2; int n = 2;
while (fac.length() < m + 3)
{ [/l fac = n! and z approximates 1/0! + 1/1! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * N,
}
Il 1z - e|] <= 2°{m-1} at this point

Zz = round(z,m+3,TONEAREST);
}

Exercise 0.14: Show how to computer with an error less than 2%, o

4.9 Notes

In notes we do historical notes, implementation notes, anmotgrs to additional material.

Error analysis for floating point computations was pionddrg Wilkinson [?]. Most books on numerical
analysis contain a section on error analysis. Detailedud&ons can be found if]. The analysis presented
here is based on [12, 22, 23, 14].

The optimal choice of pivot in the orientation test is disadin [13].

Error bounds similar to the ones derived in this lecture aeduas floating point filters in the linear
kernels of LEDA and CGAL. We discuss linear kernels in thetiecture.

Arbitrary precision integer and floating point arithmesqarovided by several software packages. Pop-
ular packages are the GNU Multiple Precision Arithmeticrhily [15] and and the Java [19] classes BigIn-
teger and BigDecimal. The former package is the most conapisate.

The orientation test and the side-of-circle test amounbtapmuting the sign of a determinant. In low
dimensions, it is easy and efficient to expand the deterrhinéman arithmetic formula. In higher dimen-
sions, this becomes infeasible. An obvious method for camguhe sign of a determinant is to compute
the value of the determinant and then take its sign. Bettgrithms are discussed in [9, 1, 3].

4.10. MATERIAL FOR THE LECTURE 17

The following sentence is from the LEDA book. We need a sinskntence in the introduction. Based
on the bad experiences made by us and many others, we ansllaidéhe theoretical foundations for correct
and efficient implementations of geometric algorithms 8,11, 8, 29,9, 22,7, 6, 5, 4, 24, 10, 2, 30, 25, 3].

4.10 Material for the Lecture

It is not clear yet, where the following remarks should go.

Dynamic filters are more costly but also more precise thari-dgmamic filters. Observe that the com-
putation oferrg in the case of an addition requires two additions and twoipiigéations. The computation
of mg requires only one addition. We concluded from our experiisien[22] that the additional cost is not
warranted for the rational kernel.

We do use dynamic filters in the number type —real—, see Seefipsince the cost of exact computa-
tion is very high for —reals— and hence a higher computatiiore for the filter is justified.

However, the necessary conditional branching could impaiformance significantly. If one is willing
to invest that time, one could also think of using an exactlémgntation scheme based on floating-point
filter techniques, e.g. [12, 26], see [28] for results of apezimental comparison. Further details are beyond
the scope of this paper.

18

LECTURE 4. NUMBER TYPES |

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

F. Avnaim, J.-D. Boissonnat, O. Devillers, and F. Prgpar Evaluating signs of determinants with
floating point arithmetic Algorithmicg 17(2):111-132, 1997.

R. Banerjee and J. Rossignac. Topologically exact eadn of polyhedra defined in CSG with loose
primitives. Computer Graphics Foruni5(4):205-217, 1996. ISSN 0167-7055.

H. Bronnimann, |. Emiris, V. Pan, and S. Pion. Compute@ct geometric predicates using modular
arithmetic with single precision. IRroceedings of 13th Annual ACM Symposium on Computational
Geometry (SCG’97pages 174-182, 1997.

C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. s#kong and easily computable separation
bound for arithmetic expressions involving square roais$rbceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA'9@ages 702—709, 1997www.mpi-sb.mpg.de/

~ mehlhorn/ftp/sepbound.ps

C. Burnikel, S. Funke, and M. Seel. Exact arithmetic gstascaded computation. Rroceedings of
the 14th Annual Symposium on Computational Geometry (8)G@ges 175-183, 1998.

C. Burnikel, K. Mehlhorn, and S. Schirra. How to compulte tVoronoi diagram of line segments:
Theoretical and experimenta | results. Rnoceedings of the 2nd Annual European Symposium on
Algorithms - ESA’94volume 855 of Lecture Notes in Computer Science, pagesZZo/-Springer,
1994.

C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneratgeometric computations. Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algoritf@3DA’'94) pages 16-23, 1994.

[8] J. Canny, B. Donald, and G. Ressler. A rational rotatiogthod for robust geometric algorithms. In

[9]

[10]

[11]

A.-S. ACM-SIGGRAPH, editorProceedings of the 8th Annual ACM Symposium on Computationa
Geometry (SCG '92)pages 251-260, 1992.

K. L. Clarkson. Safe and effective determinant evalwati IEEE Foundations of Computer Sci.
33:387-395, 1992.

O. Deuvillers, G. Liotta, F. Preparata, and R. Tamass§laecking the convexity of polytopes and the
planarity of subdivisions. Technical report, Center foo@®etric Computing, Department of Computer
Science, Brown Universi ty, 1997.

S. Fortune. Robustness issues in geometric algorithm&roceedings of the 1st Workshop on Ap-
plied Computational Geometry: Towards Geometric EngimgefWACG’96) volume 1148 of Lecture
Notes in Computer Science, pages 9-13, 1996.

19

20 BIBLIOGRAPHY

[12] S. Fortune and C. van Wyk. Static analysis yields efficexact integer arithmetic for computational
geometry. ACM Transactions on Graphicd5:223-248, 1996. preliminary version in ACM Confer-
ence on Computational Geometry 1993.

[13] S. J. Fortune. Numerical stability of algorithms for Betlaunay triangulations.Int’l. J. Comput.
Geometry and Appl5(1):193—-213, 1995.

[14] S. Funke. Exact arithmetic using cascaded computatidiaster’s thesis, Fachbereich Informatik,
Universitat des Saarlandes, Saarbriicken, 1997.

[15] GMP (GNU Multiple Precision Arithmetic Library)http://gmplib.org/

[16] D. Goldberg. What every computer scientist should katwut floating-point arithmeticACM Com-
puting Surveys23(1):5-48, 1990.

[17] D. Goldberg. Corrigendum: “What every computer sdsrghould know about floating-point arith-
metic”. ACM Computing Survey23(3):413-413, 1991.

[18] IEEE standard 754-1985 for binary floating-point amttic, 1987.
[19] Java.http://www.java.com/en/

[20] M. Junger, G. Reinelt, and D. Zepf. Computing correetddinay triangulationsComputing 47:43-49,
1991.

[21] A. Karatsuba and Y. Ofman. Multiplication of multidighumbers on automatésoviet Physics Dok-
lady, 7(7):595-596, 1963.

[22] K. Mehlhorn and S. Naher. The implementation of geaioedlgorithms. InProceedings of the
13th IFIP World Computer Congresgolume 1, pages 223-231. Elsevier Science B.V. Northdthol]
Amsterdam, 1994www.mpi-sb.mpg.de/ ~mehlhorn/ftp/ifip94.ps

[23] K. Mehlhorn and S. NaheiThe LEDA Platform for Combinatorial and Geometric Compgti€am-
bridge University Press, 1999.

[24] K. Mehlhorn, S. Naher, M. Seel, R. Seidel, T. SchilzS8hirra, and C. Uhrig. Checking geometric
programs or verification of geometric structur€omputational Geometyy2(1-2):85-103, 1999.

[25] S. Schirra. Robustness and precision issues in geimnoetmputation. to appear, preliminary version
available as MPI report.

[26] J. Shewchuk. Adaptive precision floating-point arititia and fast robust geometric predicat&ss-
crete & Computational Geometr$8:305-363, 1997.

[27] P. SterbenzFloating Point ComputationPrentice Hall, 1974.

[28] J. Tusch and S. Schirra. Experimental comparison ottst of approximate and exact convex hull
computation in the plane. IBCCG 2006.

[29] C. Yap. Towards exact geometric computation. Pioceedings of the 5th Canadian Conference on
Computational Geometry (CCCG’93)ages 405-419, 1993.

BIBLIOGRAPHY 21

[30] C.Yap and T. Dube. The exact computation paradign€dmputing in Euclidean Geometry World
Scientific Press, 1995.

