Exercise 8

8.1 Horner’s rule
Let R be a ring (commutative, with 1) and $u \in R$. Prove that Horner’s rule not only computes the remainder $f(u)$ of a polynomial $f \in R[x]$ on division by $x - u$, but also the coefficients of the quotient $(f - f(u))/(x - u)$.

8.2 Homogeneous bivariate polynomials
We call a bivariate polynomial $f(x, y)$ homogeneous if the degree of all terms in f is the same. So $x^2 - y^2 - xy$ and $xy^3 - x^2y^2 + y^4$ are homogeneous, but $x^2 + y$ is not.

- Use http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi to plot the curves $x^2 - y^2 - xy = 0$, and $xy^3 - x^2y^2 + y^4 = 0$, and $x^2 - y^2 = 0$. Formulate a conjecture about the shape of vanishing sets of homogeneous polynomials.
- Show that any homogeneous polynomial factors into linear factors of the form $ax + by$ with $a, b \in \mathbb{C}$.

8.3 The shape of a curve near the origin
Let f be a bivariate polynomial, and let f^* be the homogeneous polynomial formed by the lowest order terms of f. For $f(x, y) = y^3 + x^2 - y^2 + 2xy$, f^* consists of all terms of degree 2, that is, $f^* = x^2 - y^2 + 2xy$.

- Experiment with different f’s. Use http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi to plot the curves $f(x, y) = 0$ and $f^*(x, y) = 0$ near the origin. Formulate a conjecture.
- Prove the conjecture.

8.4 Chinese remaindering
Let $a_1, \ldots, a_r \in \mathbb{R}$ be pairwise distinct interpolation points with corresponding multiplicities $m_1, \ldots, m_r \in \mathbb{N}$ such that $\sum_{i=1}^{r} m_i = n + 1$.
Use the Chinese Remainder Theorem to show that, for each combination $b_{1,0}, \ldots, b_{1,m_1-1}, \ldots, b_{r,0}, \ldots, b_{r,m_r-1} \in \mathbb{R}$, there is a unique polynomial $f \in \mathbb{R}[x]$ of degree n such that $f^{(j)}(a_i) = b_{i,j}$ for all $i = 1, \ldots, r$ and $j = 0, \ldots, m_i - 1$.
8.5 Bounds on polynomial coefficients and root separation

(Bonus) Let \(f = \sum_{i=0}^{n} a_i x^i = a_n \prod_{j=1}^{n} (x - \zeta_j) \in \mathbb{Z}[x] \) be square-free, with (complex) roots \(\zeta_1, \ldots, \zeta_n \). We denote by \(\text{sep}(f) := \min \{|\zeta_i - \zeta_j| : i \neq j\} \) the minimum root separation of \(f \), that is the minimal distance between distinct complex roots.

Now assume that the bitlengths of the coefficients of \(f \) are bounded by \(\tau \in \mathbb{N} \), that is \(|a_i| \leq 2^\tau \) for all \(i, j \). Show that \(\text{sep}(f) \) is bounded from below by \(2^{-\mathcal{O}(n(\tau+\log n))} \), that is there exists a \(c \in \mathbb{R}_{>0} \) such that \(\text{sep}(f) \geq 2^{-cn(\tau+\log n)} \).

Hint 1: Recall exercise 4.3 and, in particular, the idea of the proof of part (iii).

Hint 2: Use the fact that the Mahler measure \(\text{Mea}(g) := |b_n| \cdot \prod_{i=1}^{n} \max \{1, |\xi_i|\} \) of a polynomial \(g \in \mathbb{Z}[x] \) of degree \(n \) is bounded by \(\|g\| = \sqrt{b_0^2 + b_1^2 + \cdots + b_n^2} \) from above, where the \(\xi_i \)'s are the complex roots of \(g \) and the \(b_i \)'s its coefficients.

Have fun with the solution!