
Computer Algebra
Michael Sagraloff

Exercise 9

Summer 2011
To be handed in on June, 14th.
Discussion on June, 15th.

9.1 Properties of Möbius transformations

In the lecture, we mentioned the group of Möbius transformations

Aut(C) :=

{
f : C→ C, z 7→ az + b

cz + d
with a, b, c, d ∈ C and

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc 6= 0

}
with the conventions f(−d

c ) =∞ and f(∞) = a
c for c 6= 0 and f(∞) =∞ for c = 0,

and the basic members

translations: tλ : C→ C, z 7→ z + λ for λ ∈ C,
homothetic transformations: hλ : C→ C, z 7→ λz for λ ∈ C \ {0} and

reciprocal transformations: r : C→ C, z 7→ 1

z
.

In this exercise, we aim to show some basic properties of those Möbius transformations.

1. Show how each element f ∈ Aut(C) can be decomposed into a concatenation of a finite number
of the elementary operations.

For the following parts, we consider sets in C under the canonical representation of C as a real
two-dimensional Euclidean plane R2. Prove:

2. tλ and hλ map lines to lines and circles to circles.

3. r maps lines through the origin to lines and all other lines to circles. Vice versa, circles are
mapped to circles if they do not contain the origin, and otherwise are mapped to lines.

4. tλ, hλ and r preserve angles between lines and circles.

9.2 Implementation of a Descartes root solver

Implement a subdivision root solver based on Descartes’ Rule of Signs. Run the Descartes solver on
the instances from assignment sheet 2, exercise 3, and compare to your implementation of EVAL.
How many subdivision steps do the two approaches require?
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9.3 Subdivision in Descartes solvers

Let f ∈ Z[x] and I = (a, b) ⊂ R be some interval with midpoint m = a+b
2 . Assume you are given the

“localization” fI of f in I as well as the intermediate polynomial gI(x) = f(a+ x(b− a)), occuring
in the evaluation of the Möbius transformation of f to fI .
We aim to show that, by storing the gI ’s, the application of the bisection rule in a subdivision
Descartes solver can be performed cheaper than computing fI1 and fI2 näıvely from scratch (that
is, referring to f), where I1 := (a,m) and I2 := (m, b).

1. Show how to obtain gI1 from gI and gI2 from gI1 .

2. Show how to obtain fI1 and fI2 from gI1 and gI2 .

Only use the operations t1, hλ for λ = 2k for some k ∈ Z and r as components of the corresponding
Möbius transformations.

Hint: What is ϕI(1)?

9.4 Descartes’ Rule of Signs in Bernstein basis

A polynomial F ∈ R[x] of degree n in Bernstein basis with respect to some interval [c, d] ⊂ R is
given by its coefficients with respect to the Bernstein polynomials

Bn
i [c, d] =

(
n

i

)
(x− c)i(d− x)n−i

(d− c)n
,

that is, we write F as

F =
n∑
i=0

bi B
n
i [c, d] =

n∑
i=0

bi

(
n

i

)
(x− c)i(d− x)n−i

(d− c)n
.

1. Show that the Bernstein polynomials (Bn
i [c, d])i=0,...,n form a basis of the R-vector space of

real polynomials of degree up to n.

2. Prove the Descartes’ Rule of Signs in Bernstein basis: Let I = (c, d) be an interval and
F =

∑n
i=0 bi B

n
i [c, d] as above. Let mI denote the number of real roots of F in I, counted

with multiplicity. Then,

v(F ) := v(b0, . . . , bn) ≥ mI and v(F ) ≡ mI mod 2.

Hint: Show v(F ) = v(F, I).

(Bonus) In the case you are familiar with Bézier curves: can you make up a geometric intuition
why this holds?

Have fun with the solution!
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