
Summer 2011
Optimization I Lecture 10

Farkas’ Lemma, Dual Simplex and Sensitivity Analysis

1 Farkas’ Lemma

Theorem 1. Let A ∈ Rm×n, b ∈ Rm. Then exactly one of the following two alternatives is true:

(i) ∃x ≥ 0 such that Ax = b;

(ii) ∃y such that yTA ≥ ~0T , yT b < 0.

Proof. Suppose (i) is true. Then (ii) cannot be true, because if both Ax = b, x ≥ 0 and yTA ≥ ~0T , then
yT b = yTAx ≥ 0.

Now, suppose (i) is not true. To show that (ii) must be true, we consider the following optimization
problem

max ~0Tx

s.t. Ax = b

x ≥ 0

and its dual

min bT y

s.t. AT y ≥ ~0

If (i) is not true, the primal problem is infeasible. So by strong duality, the dual problem must be either
infeasible or unbounded. It cannot be infeasible, because y = ~0 is feasible for the dual. So the dual optimum
= −∞, and hence there exists some y such that AT y ≥ ~0, bT y < 0.

2 Dual Simplex Method

Consider an LP in standard form: min cTx subject to Ax = b, x ≥ 0, and its dual max yT b subject to
yTA ≤ cT . Recall from last week that the (primal) Simplex Method maintains a pair of solutions, one for
the primal and one for the dual, that satisfy complementary slackness. If x is a basic solution, let B be
the indices of the basic variables. Then the associated dual solution is yT = cTBB

−1. (Note: this is a basic
solution to the dual: a basic solution to {y ∈ Rm : AT y ≤ c} must have m linearly independent constraints
that hold at equality. Indeed, the solution y we define satisfies the constraints BT y ≤ cB at equality, and
the rows of BT (i.e., the columns of B) are linearly independent.)

Today, we see the dual simplex method, which also maintains a pair of basic solutions, but now, the dual
solution is feasible, and we work toward making the primal solution feasible. We use the tableau implemen-
tation from the primal simplex method:

−cTBB−1b cT − cTBB−1A

B−1b B−1A
associated solution xB=B−1b⇒

−cTBxB c̄1 . . . c̄n
xB(1)

... B−1A
xB(m)
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• Now, we don’t require x to be nonnegative, but we do require c̄ ≥ 0 (which is the same as requiring
that the dual solution given by yT = cTBB

−1 is dual feasible).

• If there is a basic variable xB(`) < 0, we want to increase it to 0 (make it leave the basis). If all basic
variables are ≥ 0, then we are done, since we have found a feasible primal and dual solution that obey
complementary slackness.

• Denote the `-th row of the tableau by (xB(`), v1, . . . , vn). Then, we let the following variable enter the
basis:

j such that vj < 0 and
c̄j
|vj |

= min
i:vi<0

c̄i
|vi|

.

• If such j exists, then we do a pivot as before, i.e., j must become the `-th basic variable, so we do

elementary row operations to transform the j-th column of the tableau into

[
0
e`

]
. Note that this

means we add
c̄j
|vj | times row ` to row 0, so the i-th entry in row 0 becomes c̄i + vi

c̄j
|vj | and this is ≥ 0

by the choice of j – we thus maintain dual feasibility.

• Suppose that there is no j such that vj < 0. Then, we can conclude that the primal problem is
infeasible (and hence, the dual problem has optimum +∞):

Let gT be the `-th row of B−1. Then, the `-th row of the tableau is equal to gT
[
b A

]
. We know

that xB(`) = gT b < 0, and we know that (v1, . . . , vn) = gTA ≥ 0. Then, by Farkas’ Lemma, there
exists no x ≥ 0 such that Ax = b.

Example:

0 2 6 10 0 0
2 -2 4 1 1 0
-1 4 -2∗ -3 0 1

Since the second basic variable (corresponding to x5) is less than 0, we want to let x5 leave the basis.
We check which variable should enter the basis by finding mini:vi<0

c̄i
|vi| = min{ 6

|−2| ,
1
0 | − 3|} = 3, so the

corresponding variable (x2) leaves the basis.
We pivot on element (2, 2) and obtain the following new tablaeau:

-3 14 0 1 0 3
0 6 0 -5 1 2

1/2 -2 1 3/2 0 -1/2

So when should we use the dual simplex method instead of the primal simplex method?

• It is often easier to find an initial feasible dual solution (for example, if c, A ≥ 0 then y = 0 is a feasible
dual solution) – so if we use the dual simplex method, we don’t have to do Phase I of the Simplex
Method to find an initial bfs.

• In practice, the dual simplex method is faster (see a lecture by Bixby at ADFOCS’03: http://www.mpi-
inf.mpg.de/conferences/adfocs-03/Slides/Bixby 2.pdf).

• If we need to resolve an LP, because some of our input data changed, and the previous dual solution
remains feasible, e.g.: if we change some bi or add a new constraint.
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3 Sensitivity Analysis

We consider a primal and dual in standard form, i.e.,

min cTx max yT b
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0

Suppose we have solved this problem to optimality, and that the optimal basis is B, the optimal primal
solution is xB = B−1b, xj = 0, j 6= B(1), . . . , B(m) and the optimal dual solution is yT = cTBB

−1b.

3.1 Changes in b

Suppose we change b to b+ δei, i.e., one entry is changed by δ (which may be positive or negative).
The primal solution associated with the current basis has xB = B−1(b+δei). Note that the dual solution

remains feasible, and hence the reduced costs remain non-negative. So we only need to check if B−1(b+ δei)
is still feasible, i.e., if it is ≥ 0.

Suppose it is still feasible, then we have found that the optimal value has changed by

cTBB
−1(b+ δei)− cTBB−1 = δcTBBei = δyT ei = δyi.

This is the reason why we sometimes call the dual variables the marginal costs or shadow prices of the
requirements: the i-th dual variable tells us by how much the dual changes if we increase the i-th requirement
by one unit.

If B−1(b+ δei) is not feasible, then we can use the Dual Simplex Method from the current basis to find
an optimal solution for the new problem.

3.2 Changes in c

Suppose we change c to c+ δej , i.e., one entry is changed by δ (which may be positive or negative).
The primal solution associated with the current basis remains feasible, but it may not be optimal, i.e.,

the reduced cost vector cT − cTBB−1A may not be non-negative.
We consider two cases:

• Suppose j is a non-basic variable. Then the only reduced cost that changes is c̄j ← c̄j + δ.

• Suppose j is a basic variable, then cB changes, so all reduced costs are affected.

If the reduced costs are still non-negative, then our current solution is optimal. In the first case (j is
non-basic) the objective does not change, in the second case (j is basic) it changes by δ. If some reduced
cost becomes positive, we can use the Primal Simplex Method to compute the new optimal solution starting
from the current basis.

3.3 Adding a variable

Suppose we add a variable xn+1 so our new problem becomes min cTx+cn+1xn+1 subject to Ax+An+1xn+1 =
b, x ≥ 0, xn+1 ≥ 0.

We can just check if our current basis is still optimal, i.e., if the reduced cost of xn+1 is non-negative.
We compute

c̄n+1 = cn+1 − cTBB−1An+1.

If it is non-negative, then our current solution is optimal, otherwise, we use the Primal Simplex Method to
find an optimal solution starting from the current basis.
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3.4 Changes in a column of A

If the column, say Aj is non-basic, then B−1 does not change, so the primal solution is still feasible. The
reduced cost of j changes and may become negative; in that case, we can use the primal simplex method to
find an optimal solution starting from the current solution.

If the column that changes is basic, the whole tableau changes, in fact, the current basis may not be a
basis anymore. You can still say something if the change is small (and the current basis is still a basis), but
the arguments become more complicated so we omit the details.

3.5 Adding a constraint

Here, we have to consider two cases: either an inequality or an equality constraint is added.

• Suppose the new constraint is aTm+1x ≥ bm+1. If the current optimal solution satisfies this constraint,
it is optimal for the new problem. Otherwise, we add a slack variable xn+1 and rewrite the constraint
as aTm+1x− xn+1 = bm+1.

The new constraint matrix is

[
A ~0

aTm+1 −1

]
, its right hand side vector is

[
b

bm+1

]
and the new

objective coefficients are
[
cT 0

]
.

We can make the new slack variable basic, since the column we added is linearly independent of our
current basis. Note that the associated basic feasible solution will have xn+1 < 0; otherwise, the
optimal solution to the original problem was feasible to the new problem. So, we need to use the dual
simplex method.

What does the tableau that we start with look like? The new basis matrix is[
B ~0
aT −1

]
,

where aT is obtained by keeping only those entries of aTm+1 that correspond to the basic variables. Its
inverse is [

B−1 ~0
aTB−1 −1

]
.

(You can verify that the product of the new basis matrix and its inverse is indeed the (m+1)× (m+1)
identity matrix).

Using this information, we can determine the new tableau, and use the dual simplex method to find
the new optimum: The reduced costs become

[
cT ; 0

]
−
[
cTB ; 0

] [ B−1; ~0
aTB−1; −1

] [
A; ~0

aTm+1; −1

]
=
[
cT − cTBB−1A; 0

]
.

Row 1, . . . ,m+ 1, columns 1, . . . , n+ 1 of the tableau contain[
B−1 ~0
aTB−1 −1

] [
A; ~0

aTm+1; −1

]
=

[
B−1A ~0

aTB−1A− aTm+1 1

]
.

(Note: we thus only need to compute the last row, since the other rows stay the same.)

• Now, suppose we add a new equality constraint aTm+1x = bm+1. If the current optimal solution satisfies
this constraint, it is optimal for the new problem.

Otherwise, suppose without loss of generality that our current solution x∗ has aTm+1x
∗ > bm+1. We

add an artificial variable xn+1 ≥ 0, and rewrite the constraint as aTm+1x − xn+1 = bm+1. Note that
we want xn+1 to be zero in an optimal solution, since otherwise the solution is not feasible. Hence,
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we give xn+1 a large objective coefficient M . The new constraint matrix and right hand side are thus

the same as in the previous case,

[
A ~0

aTm+1 −1

]
, and

[
b

bm+1

]
and the new objective coefficients are[

cT M
]
.

Note that if we set all variables x1, . . . , xn according to our current solution, we will have xn+1 =
aTm+1x

∗ − bm+1 > 0, hence this gives us a primal feasible solution. By the same arguments as in the
previous case, this is a basic solution. This solution is not optimal (i.e., the corresponding dual solution
is not feasible) if we choose M to be large enough. Hence, we can use the dual simplex method from
the current solution.

We now give the details on how to construct the tableau: The inverse basis matrix is given by[
B−1 ~0
aTB−1 −1

]
,

and row 1, . . . ,m+ 1, columns 1, . . . , n+ 1 of the tableau contain[
B−1 ~0
aTB−1 −1

] [
A; ~0

aTm+1; −1

]
=

[
B−1A ~0

aTB−1A− aTm+1 1

]
.

(Note: we thus only need to compute the last row, since the other rows stay the same.)

The new reduced costs are given by

[
cT ; M

]
−
[
cTB ; M

] [ B−1; ~0
aTB−1; −1

] [
A; ~0

aTm+1; −1

]
=
[
cT − cTBB−1A−M(aTB−1A− aTm+1); M

]
.

Example:
min −5x1 −x2 +12x3

s.t. 3x1 +2x2 +x3 = 10
5x1 +3x2 +x4 = 16
x1, x2, x3, x4 ≥ 0

The optimal tableau is
12 0 0 2 7
2 1 0 -3 2
2 0 1 5 -3

Note that B−1 =

[
−3 2
5 −3

]
.

We add the constraint x1 + x2 = 5, which is violated by the optimal solution (2, 2, 0, 0).

We form the new problem

min −5x1 −x2 +12x3 −Mx5

s.t. 3x1 +2x2 +x3 = 10
5x1 +3x2 +x4 = 16
x1 +x2 −x5 = 5
x1, x2, x3, x4, x5 ≥ 0

We want to obtain the tableau associated with the solution (2, 2, 0, 0, 1).

The new inverse basis matrix is[
B−1 ~0
aTB−1 −1

]
=

 −3 2 0
5 −3 0
2 −1 −1

 ,
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and we compute aTB−1A − aTm+1 =
[

0 0 2 −1
]
. to obtain entries 1, . . . , n of the new row

added to the tableau, and the new reduced costs are obtained from the previous ones by subtracting
M(aTB−1A− aTm+1) = M

[
0 0 2 −1

]
.

So our new tableau is

12 0 0 2-2M 7+M 0
2 1 0 -3 2 0
2 0 1 5 -3 0
1 0 0 2 -1 1
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