
Summer 2011
Optimization I Lecture 7

Initialization, Anti-Cycling, Number of Iterations

Today, we are going to try to wrap up all the remaining loose ends of the Simplex Method. We will see
how to find an initial bfs (but some details are left for the homework) and we will see how to prevent cycling
(and thus how we can ensure that the Simplex Method terminates in finite time). Finally, we will summarize
previous discussions of some other pivot rules and we will discuss the number of iterations and complexity
of the simplex method.

1 Initialization

Suppose we want to solve

min cTx

s.t. Ax = b

x ≥ 0

We know how to find the optimal solution once we have a basic feasible solution to start with. But how to
find this initial bfs?

First, we can make sure that the right hand side vector b has only non-negative entries (otherwise, if
bi < 0, we can just replace aTi x = bi by −aTi x = −bi). We then first solve the following problem:

min [1, . . . , 1]y

s.t. Ax+ Imy = b

x, y ≥ 0

The variables y1, . . . , ym are called the artificial variables. For this problem, the initial bfs is easily found –
just take the solution x = ~0, y = b. This is feasible and the corresponding basis is Im.

Now, we can use the simplex method to find an optimal solution for the problem of minimizing
∑

i yi.
This is called Phase I. We either find a solution such that

∑
i yi = 0, or the optimal solution has

∑
i yi > 0.

In the latter case, there exists no x such that x ≥ 0, Ax = b, so the problem we really want to solve is
infeasible. In the first case, we found a solution x to Ax = b, x ≥ 0. But is it a basic feasible solution and
what is the associated basis?

In the homework, you will see that this is not necessarily the case, but you will see how to turn x into a
bfs.

Once we have a bfs for Ax = b, x ≥ 0, we can continue with the Simplex Method to minimize the real
objective cTx. This is referred to as Phase II of the Simplex method.

2 Anti-Cycling Rules

We say that the Simplex Method cycles if we encounter a sequence of bases B(1),B(2), . . . ,B(r) where
B(r) = B(1); in other words, the r-th basis is exactly the same as the first one (and, therefore, we keep
cycling forever). It must be the case that each of the pivots in this sequence is degenerate, i.e., θ∗ = 0
in each of the Simplex iterations in this sequence – otherwise, we know the objective value decreases by
c̄jθ
∗ < 0, and hence it is not possible to come back to the same basis.
We will now see a simple rule that can make sure we do not cycle.
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Definition 1 (Bland’s least index rule). • If there is a choice of entering variables (i.e., there are
several j such that c̄j < 0), choose the variable with the smallest index, (i.e., we choose index j∗ =
min{j : c̄j < 0}).

• If there is a choice of leaving variables (i.e., there are several ` such that xB(`)/u` = mini:ui>0 xB(i)/ui),
choose the variable with the smallest index (i.e., choose index j∗ = min{j : j = B(`) for some ` =
1, . . . ,m, u` > 0, and xB(`)/u` = mini:ui>0 xB(i)/ui}) .

Theorem 1. If the entering and leaving variables are chosen according to Bland’s rule, then the Simplex
Method does not cycle.

Proof. Suppose the Simplex Method does cycle. Then there is a sequence of bases B(1),B(2), . . . ,B(r) where
B(r) = B(1). Note that the corresponding basic feasible solution is the same for all these bases.

We remove all columns and rows from the tableau that never contain the pivot element in any of the
iterations of the cycle. Note that this corresponds to looking at an instance with fewer variables and fewer
constraints, but that - if the Simplex Method cycles on the original instance - the Simplex Method will also
cycle on this instance. Also, note that all variables in the remaining instance have xj = 0 in the current
basic feasible solution.

Let xt be the variable with the highest index. There must be some iteration in the cycle when xt enters
the basis and when xt leaves the basis.

• Consider the iteration when xt enters the basis. Let B(1), . . . , B(m) be the indices of the basic variables
in this iteration, and let AB be the basis matrix. Let c̄ be the reduced cost in this iteration, i.e.,
c̄T = cT − cTBA

−1
B A. Note that c̄j ≥ 0 for all j except for j = t (since for basic variables, c̄j = 0 and

for all non-basic variables, we must have c̄j ≥ 0 because otherwise we would have chosen a different
entering variable.)

• Consider the iteration when xt leaves the basis. Let D(1), . . . , D(m) be the indices of the basic variables
in this iteration, and let AD be the basis matrix. Let xs be the variable that enters the basis in this
iteration, and let xt be the `-th basic variable, i.e., D(`) = t.

The pivot column of the tableau is

[
cs − cTDA

−1
D As

A−1D As

]
. Let u = A−1D As.

Now, since xD(i) = 0 for all i, any basic variable xD(i) with ui > 0 can be chosen to leave the basis.
Since we choose xt = xB(`) (the variable with the highest index), it must be the case that ui ≤ 0 for
all i 6= `.

Define

dj =

 −ui if j = D(i)
1 if j = s
0 otherwise

Then dj ≥ 0 for all j except j = t.

Finally, we note that cs − cTDA
−1
D As < 0, since the Simplex Method chose xs to enter the basis.

We consider the product c̄T d. Since c̄j ≥ 0 for all j except j = t and dj ≥ 0 for all j except t, and
c̄t < 0, dt < 0, we have c̄T d > 0.

On the other hand, note that Ad = ADdD +As = −ADu+As = −ADA
−1
D As +As = 0. Therefore,

c̄T d = (cT − cTBA−1B A)d

= cT d since Ad = 0

= cTDdD + cs

= −cTDu+ cs

= −cTDA−1D As + cs.

But we know this last quantity, cs− cTDA
−1
D As must be less than zero, since it is the reduced cost of xs when

xs entered the basis. So, we have a contradiction.
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3 Some Other Pivot Rules

Bland’s rule is a pivot rule which guarantees that the number of iterations is finite, but in practice, other pivot
rules may lead to a faster algorithm. Here are a few common rules, and their advantages and disadvantages.

• Choose the column for which c̄j < 0 is most negative.

Disadvantage: it may be the case that θ∗ - the amount by which we can move in the direction d which
has dj = 1, dj′ = 0 for j′ 6= j, B(1), . . . , B(m) and dB = −u = −B−1Aj - is tiny so we do not actually
make much progress.

• Choose the column for which θ∗c̄j is most negative.

Disadvantage: we need to compute d and then θ∗ for each column, which is computationally expensive.

Advantage: the number of iterations tends to be smaller in practice.

• Choose an arbitrary column for which c̄j < 0 (say, the first one we encounter).

Advantage: we don’t have to compute all c̄j ’s. Note also that this is the same as Bland’s rule, so we
know cycling does not occur.

Disadvantage: we may make only a small amount of progress in an iteration.

• Choose the column for which c̄j/‖d‖ is most negative (steepest edge).

Disadvantage: we need to compute d for each column, which is computationally expensive (but we do
not need to know θ∗, which we needed for the second pivot rule).

Advantage: in practice, the number of iterations tends to be smaller.

4 Number of Iterations

We have seen that an iteration of the Simplex method takes polynomial time (for example, the full tableau
implementation takes O(mn) time). To determine the complexity of the Simplex method, we need to bound
the number of iterations.

We know that if we use Bland’s rule, the Simplex method considers each basis at most once. Hence, the
number of iterations is at most the number of bases,

(
n
m

)
. In practice, O(m) iterations seem to suffice for

most problems.
For most known pivot rules, examples are known where the number of iterations is 2n − 1. The idea

behind these examples is due to Klee and Minty (1970): start with the n-dimensional unit hypercube (so
the constraints are 0 ≤ xj ≤ 1 for j = 1, . . . , n). You can show that there is a Hamiltonian path, i.e. a path
that visits all vertices exactly once. The idea is now to perturb the constraints and choose the costs so that
the simplex algorithm visits all vertices according to the Hamiltonian path, and thus makes 2n − 1 pivots.

No pivot rule is known for which the number of iterations is polynomial. Hence, although algorithms
based on the Simplex method (with a “good” pivot rule and other tricks to speed up computation) work
well in practice, they are not polynomial time algorithms.

In fact, the existence of a pivot rule which would guarantee that the number of iterations is related to
the diameter of a polyhedron: Let’s define the distance dP (x, y) between two bfs x and y of a polyhdron P
as the minimum number of non-degenerate pivots needed to go from x to y. Then, the diameter D(P ) of a
polyhedron P is defined as maxx,y: bfs of P dP (x, y).

Let Pn,m be the set of all bounded1 polyhedra P = {x ∈ Rn : Ax ≥ b} for which A ∈ Rm×n, and define

∆(n,m) = max
P∈Pn,m

D(P ).

1In lecture, I forgot to say that P should be bounded
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If ∆(n,m) is not bounded by a polynomial in n,m, then clearly, no pivot rule can exist that is guaranteed
to give at most a polynomial number of iterations2 If there exists a pivot rule which leads to a polynomial
number of iterations, then this implies that ∆(n,m) is bounded by some polynomial in n,m. A famous
conjecture that was open for a long time (since 1957) is the Hirsch conjecture:

Conjecture 1 (Hirsch conjecture).
∆(n,m) ≤ m− n.

Last year, Francisco Santos gave an example that shows that the Hirsch conjecture is not true.
Note however, that it may still be true that ∆(m,n) is bounded by a polynomial in n,m. The best

upperbound currently known on ∆(m,n) is m(1+logn).

2In lecture, I said something which is not right: instead of “if not A then not B” (as is written here), I said “B then A”.
Sorry for my mistake!
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