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Linear Programming Duality

1 Taking a dual

Consider the following LP:

min 6x1 +4x2 +2x3

s.t. 4x1 +2x2 +x3 ≥ 5
x1 +x2 ≥ 3

x2 +x3 ≥ 4
xi ≥ 0, for i = 1, 2, 3.

Suppose you want to give a lower bound on the optimal value of this LP. What can we say?

• Since all variables are non-negative, 6x1 + 4x2 + 2x3 ≥ 4x1 + 2x2 + x3. So the value of the LP must
be at least 5.

• By the same argument, 6x1 + 4x2 + 2x3 ≥ (4x1 + 2x2 + x3) + 2(x1 + x2) ≥ 5 + 2 · 3 = 11.

• Again by the same argument, 6x1+4x2+2x3 ≥ (4x1+2x2+x3)+(x1+x2)+(x2+x3) ≥ 5+3+4 = 12.

How do we determine the best lower bound we can achieve this way? By setting up a different LP! Let y1
be the number of times we take the first constraint, y2 the number of times we take the second constraint
and y3 the number of times we take the third constraint. Then the lower bound we get is 5y1 + 3y2 + 4y3,
and we need to ensure that this is a lower bound, i.e.

6x1 + 4x2 + 2x3 ≥ y1(4x1 + 2x2 + x3) + y2(x1 + x2) + y3(x2 + x3).

We can do this by ensuring that 4y1 + y2 ≤ 6 (since we have 6x1 in the objective value, and 4x1 in the first
constraint, 1x1 in the second constraint and 0x1 in the third constraint), 2y1 + y2 + y3 ≤ 4, y1 + y2 ≤ 2.
Also, we need to have y1, y2, y3 ≥ 0 (otherwise the inequalities in the constraints change direction, and we
would not get a lower bound). We thus get the following LP for getting the best lower bound:

max 5y1 +3y2 +4y3
s.t. 4y1 +2y2 ≤ 6

2y1 +y2 +y3 ≤ 4
y1 +y3 ≤ 2

yi ≥ 0, for i = 1, 2, 3.

This is called the dual linear program.
Let’s consider a second example:

min x1 +2x2 +3x3

s.t. −x1 +3x2 = 5
2x1 −x2 +3x3 ≥ 6

x3 ≤ 4
x1 ≥ 0, x2 ≤ 0, x3 free.

Let’s again find the best possible lower bound on the objective value: We let y1, y2, y3 again be the
number of times we take the first, second and third constraint respectively. The lower bound on the optimal
value we want to obtain is 5y1 + 6y2 + 4y3.
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We need to ensure that

x1 + 2x2 + 3x3 ≥ y1(−x1 + 3x2) + y2(2x1−x2 + 3x3) + y3(x3) = (−y1 + 2y2)x1 + (3y1− y2)x2 + (3y2 + y3)x3,

and that
y1(−x1 + 3x2) + y2(2x1 − x2 + 3x3) + y3(x3) ≥ 5y1 + 6y2 + 4y3.

First, we derive constraints by using the sign constraints of xj and comparing the coefficient of each xj

on the left hand side and the right hand side of the first inequality:

know: x1 ≥ 0 & want: x1 ≥ (−y1 + 2y2)x1 ⇒ −y1 + 2y2 ≤ 1

know: x2 ≤ 0 & want: 2x2 ≥ (3y1 − y2)x2 ⇒ 3y1 − y2 ≥ 2

know: x3 free & want: 3x3 ≥ (3y2 + y3)x3 ⇒ 3y2 + y3 = 3

Then, we derive sign constraints for the variables yi by using the i-th constraint of the linear program and
comparing the coefficient of each yi on the left hand side and the right hand side of the second inequality:

know: − x1 + 3x2 = 5 & want: y1(−x1 + 3x2) ≥ 5 ⇒ y1 free

know: 2x1 − x2 + 3x3 ≥ 6 & want: y2(2x1 − x2 + 3x3) ≥ 6y2 ⇒ y2 ≥ 0

know: x3 ≤ 4 & want: y3(x3) ≥ 4y3 ⇒ y3 ≤ 0

So, we get the following dual linear program

max 5y1 +6y2 +4y3
s.t. −y1 +2y2 ≤ 1

3y1 −y2 ≥ 2
3y2 +y3 = 3

y1 free, y2 ≥ 0 y3 ≤ 0.

We can now give the general rules for finding the dual of a given linear program:

Primal minimize maximize Dual
≥ bi ≥ 0

constraints ≤ bi ≤ 0 variables
= bi free
≥ 0 ≤ cj

variables ≤ 0 ≥ cj constraints
free = cj

For a problem in standard form, we thus find the following pair of primal and dual problem:

min cTx max yT b
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0

There are a few questions we could ask:

• What happens if we take a dual linear program, multiply its objective by −1 to obtain a
minimization problem, and then take the dual of this LP?

Suppose we use the dual from our previous example, where we replace the objective max 5y1+6y2+4y3
by min−5y1 − 6y2 − 4y3. We also replace yi by x̄i and we will denote the variables in the dual by ȳj .

min −5x̄1 −6x̄2 −4x̄3

s.t. −x̄1 +2x̄2 ≤ 1
3x̄1 −x̄2 ≥ 2

3x̄2 +x̄3 = 3
x̄1 free, x̄2 ≥ 0, x̄3 ≤ 0.
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The dual is:
max ȳ1 +2ȳ2 +3ȳ3
s.t. −ȳ1 +3ȳ2 = −5

2ȳ1 −ȳ2 +3ȳ3 ≤ −6
ȳ3 ≥ −4

ȳ1 ≤ 0, ȳ2 ≥ 0, ȳ3 free .

Now, note that if we let ȳj = −xj , then we get

max −x1 −2x2 −3x3

s.t. x1 −3x2 = −5
−2x1 +x2 −3x3 ≤ −6

−x3 ≥ −4
x1 ≥ 0, x2 ≤ 0, x3 free.

We can multiply each of the constraints by −1 and replace the objective by minx1 + 2x2 + 3x3 to see
that the dual of the dual is the primal LP!

• Do we get the same dual linear program if we take the dual directly, and if we first convert
a problem into standard form, and then take the dual?

For example, we can take the dual of the following LP directly:

min cTx max yT b
s.t. Ax ≥ b s.t. AT y = c

x free y ≥ 0

or, we can change it into standard form, by replacing x by x+ − x− and by adding surplus variables,
and then take its dual:

min cTx+ − cTx− max yT b
s.t. Ax+ −Ax− − Is ≥ b s.t. AT y ≤ c

x+ ≥ 0, x− ≥ 0, s ≥ 0 −AT y ≤ −c
−Iy ≤ 0
y ≥ 0

It is easy to see that the dual linear programs we derived in these two ways are the same.

We state the following two theorems which give the general answers to these two questions without proof
(as the proof is just a tedious exercise).

Definition 1. Two linear programs are equivalent if they are either both infeasible, or they are both feasible
and have the same objective value.

Theorem 1. If we transform the dual linear program into an equivalent minimization problem, and take its
dual, then we obtain a problem that is equivalent to the original problem.

Theorem 2. If we transform a minimization linear program into another equivalent minimization problem
, then their duals are also equivalent.

We will use the convention that the original LP, which we will call the primal LP is a minimization
problem, and that the dual LP is a maximization problem.

2 Duality Theorem

We derived the dual by trying to find the best possible lower bound on the objective value of the primal
LP. In fact, we constructed the dual so that the objective value of a feasible solution to the dual LP gives a
lower bound on the objective value of any feasible solution to the primal LP, as we prove for LPs in standard
form:
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Theorem 3 (Weak duality). If x is a feasible solution to the primal LP and y is a feasible solution to the
dual LP, then cTx ≥ bT y.

Proof. We may restrict our attention to a primal LP in standard form, by Theorem 2. Then, we have

cTx ≥ (AT y)Tx = yT (Ax) ≥ yT b, (1)

where the first inequality follows because AT y ≥ c and x ≥ 0, and the second inequality because Ax = b.

Note that it is thus the case that:

• If the optimal value of the primal LP is −∞, then the dual LP is infeasible.

• If the optimal value of the dual LP is +∞, then the primal LP is infeasible.

• If x is feasible to the primal LP and y is feasible to the dual LP, and cTx = bT y, then x is optimal for
the primal and y is optimal for the dual LP.

In fact, we can prove the following result, which is the main result on linear programming duality.

Theorem 4 (Strong duality). If a linear program has an optimal solution, then so does its dual and the
respective objective values are equal.

Proof. By Theorem 2, it suffices to consider a problem in standard form, i.e., min{cTx : Ax = b, x ≥ 0}.
The dual is given by max{bT y : AT y ≤ c}.

Suppose the rows of A are linearly independent, and there exists an optimal solution (if the rows are
not linearly independent, we can first transform it into an equivalent problem by removing redundant con-
straints). The simplex algorithm algorithm (with an appropriate pivoting rule so that cycling is avoided)
will find an optimal basic feasible solution, say x, and Let AB be the corresponding basis matrix. Note that
cTx = cTBxB = cTBA

−1
B b.

The reduced costs are all non-negative, so c̄T = cT − cTBA
−1
B A ≥ 0. We let yT = cTBA

−1
B . Then cT ≤ yTA,

or AT y ≤ c. So y is a feasible solution to the dual LP. Also, bT y = yT b = cTBA
−1
B b = cTx.

We find the following possibilities for the outcome of a linear program and its dual:

Primal \ Dual Finite optimum Unbounded Infeasible

Finite Optimum possible impossible impossible
Unbounded impossible impossible possible
Infeasible impossible possible possible
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