
Summer 2011
Optimization I Lecture 8

Linear Programming Duality

1 Duality recap

We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal
value we can achieve. We found the following form for a primal LP and its dual:

Primal:

min c1x1 + . . . +cjxj + . . . +cnxn

s.t. a11x1 + . . . +a1jxj + . . . +a1nxn ≥ or ≤ or = b1
...

...
...

...
...

...
...

ai1x1 + . . . +aijxj + . . . +ainxn bi
...

...
...

...
...

...
...

am1x1 + . . . +amjxj + . . . +amnxn bm

sign constraints on x1, . . . , xn

Dual:

max b1y1 + . . . +biyi + . . . +bmym
s.t. a11y1 + . . . +ai1yi + . . . +am1ym ≥ or ≤ or = c1

...
...

...
...

...
...

...
a1jy1 + . . . +aijyi + . . . +amjym cj

...
...

...
...

...
...

...
a1ny1 + . . . +ainyi + . . . +amnym cn

sign constraints on y1, . . . , ym

Note that we can also write the primal and dual in matrix notation as

Primal:

min cTx
s.t. ≥ or ≤ or =

Ax (different for b
each row)

sign constraints on x1, . . . , xn

Dual:

min bT y
s.t. ≥ or ≤ or =

AT y (different for c
each row)

sign constraints on y1, . . . , ym

The signs of the constraints in the dual are determined by the sign constraint of the corresponding
variables in the primal:

Primal variable xj ≥ 0⇒ Dual constraint ≤ cj ,

and if xj ≤ 0, then the dual constraint is ≥ cj , and if xj is free then the dual constrain is = cj .
The sign constraints of the variables in the dual are determined by the sign of the corresponding constraint

in the primal:
Primal constraint ≥ bi ⇒ Dual variable yi ≥ 0,

and if the primal constraint requires ≤ bi, we get yi ≤ 0 and if the primal constraint is = bi, then yi is free.
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Theorem 1 (Weak duality). If x is a feasible solution to the primal LP and y is a feasible solution to the
dual LP, then cTx ≥ bT y.

Proof. We have

cTx =
∑
j=1

cjxj ≥
n∑

j=1

(

m∑
i=1

aijyi)xj =

m∑
i=1

yi

n∑
j=1

aijxj ≥
m∑
i=1

yibi = bT y.

The first inequality follows from how we determined the sign of the constraints in the dual: we made sure
that

cjxj ≥
m∑
i=1

aijyixj .

The second inequality follows from how we determined the sign of the variables in the dual: we made sure
that

yi

n∑
j=1

aijxj ≥ yibi.

Weak duality tells us the following: We want to minimize the primal objective, but as soon as we find
a feasible solution to the dual LP with some objective z, then we know the primal objective cannot be less
than that. On the other hand, we want to maximize the dual objective, but as soon as we find a feasible
solution to the primal LP with some objective z, then we know the dual objective cannot be higher than
that.

Last time we discussed the following theorem:

Theorem 2. If we transform a minimization linear program into another equivalent minimization problem,
then their duals are also equivalent.

Using that, we can prove the following theorem:

Theorem 3. ”The dual of the dual is the primal”: If we transform the dual linear program into an equivalent
minimization problem, and take its dual, then we obtain a problem that is equivalent to the original problem.

Proof. By Theorem 2, it is enough to prove it if the primal LP is in standard form. We then have

min cTx max bT y min−bT y max−cTx min cTx

s.t.Ax = b
take dual→ s.t.Aty ≤ c

transform→ s.t.−AT y ≥ −c take dual→ s.t.−Ax = −b transform→ s.t.Ax = b
x ≥ 0 x ≥ 0 x ≥ 0

Now, a major result in linear programming says that if both the primal LP and the dual LP have a
feasible solution, then their optimal values are equal. This is called strong duality.

Theorem 4 (Strong duality). If a linear program has an optimal solution, then so does its dual and the
respective objective values are equal.

The proof of this can be done in two ways: there is a direct proof using separating hyperplanes which we
will not go into, but you can find it in the book in Section 4.7. We repeat the proof from last time:

Proof. Convert the primal into standard form, i.e. min cTx subject to Ax = b, x ≥ 0. The dual is max bT y
subject to AT y ≤ c, which we note is the same as max yT b subject to cT − yTA ≥ 0. The simplex method
will terminate with an optimal solution in which all reduced costs are non-negative, i.e. cT − cTBB

−1A ≥ 0.
So yT = cTBB

−1 is a feasible dual solution, and it has dual objective value yT b = cTBB
−1b, which is the same

as the primal objective value.
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We now know that the following are the only possibilities for the primal and dual:

• both have the same finite optimal value,

• one is unbounded and the other infeasible,

• both are infeasible.

2 An Application of Duality: Shortest Path

We are given a directed graph G = (V,E). Let |V | = m, |E| = n. We assume the nodes are labelled
v1, . . . , vm, and the edges are labelled e1, . . . , en. There is a cost/length cj ≥ 0 associated with each edge
ej ∈ E. Suppose we want to find the shortest path from v1 to vm.

To formulate the problem of finding the shortest path as a linear program, we think of sending a unit of
flow out of v1 to vm. For every other node, the flow into the node must be equal to the flow out of the node.
We can represent this as follows: We let x = [x1, . . . , xn]T where xj is the amount of flow on edge ej . We
define an m× n matrix A which has the following entries:

aij =

 1 if ej leaves vi
−1 if ej enters vi
0 otherwise

Let aTi denote the i-th row of A, then aTi x is equal to
∑

j:ej leaves vi
xj −

∑
j:ej enters vi

xj . We define

bi =

 1 if i = 1
−1 if i = m
0 otherwise

So we want to solve a problem in standard form: min cTx subject to Ax = b, x ≥ 0.
Note that we are interested in finding a integral solution to this problem, and we now allow the linear

program to find fractional solutions as well. So we are not guaranteed that the optimal value of the LP is
not strictly lower than the length of the shortest path from v1 to vm (why can it not be strictly higher?).
Later in the course, you will learn that, in fact, this LP has integral basic feasible solutions, but for today, we
will use duality to prove that the optimal value of this LP is actually equal to the length of the shortest path.

The dual of this LP is max bT y subject to AT y ≤ c. Since bi is 0 everywhere except for i = 1,m, we get
that bT y = y1 − ym. The j-th constraint is equal to

∑n
i=1 aijyi ≤ cj . Suppose edge ej = (vk, v`), and let

c(vk,v`) = cj . Then the j-th constraint is equal to yk − y` ≤ c(vk,v`). So the dual LP is the following:

max y1 − ym

s.t. yk − y` ≤ c(vk,v`) for every edge (vk, v`) ∈ E

Let d(vk, vm) be the length of the shortest path from vk to vm. Then, we can obtain a feasible dual
solution by setting yk = d(vk, vm): we need to verify that

yk ≤ c(vk,v`) + y`.

But of course this is true: the length of the shortest path from vk to vm cannot be longer than if we first go
from vk to v` and then take the shortest path from there to vm. So we have found a dual feasible solution,
and its objective value is d(v1, vm)− d(vm, vm) = d(v1, vm).

Since we also have a primal solution with the same objective value (set xj = 1 for the edges on the
shortest path from v1 to vm), by strong duality, both solutions are optimal.

3



3 Interpreting duals

In the example we saw, the dual had a very nice interpretation, but it seems hard to interpret duals in
general. Here is how I always think about primals and duals:

I think of primal LPs as “I am doing some activity (for example, making a product, going from A to B)
and I am trying to minimize the cost of doing it”. Then, I think of the dual LP as “a company wants to offer
me the service of doing the activity for me, and wants to maximize the amount of profit they can make”.

The company cannot raise its prices arbitrarily, because if it becomes more expensive than if I do it
myself, then I will not buy their service. So, in the example of the shortest path, the company may be a
bus company that can take me from v1 to vm. In fact, they have bus services all over the graph: I can leave
from any location and get off in any other location. They have a pricing scheme that gives a price yk for a
ticket from location vk, and if you get off at an intermediate location v` then you don’t have to pay the full
price, but instead, you pay yk − y`. The company tries to maximize the amount they get from people going
from v1 to vm, and they cannot make any journey on the network more expensive than if a customer would
go there by other means, so yk − y` ≤ c(vk,v`).

Another example, given in the book, is the diet problem: I want to satisfy all my nutritional requirements
and minimize the cost of food. Some company sells pills for each of the nutrients, and wants to maximize
the amount of money they get for selling me the pills that satisfy all my requirements. However, they cannot
make the pills more expensive than if I just buy my groceries and satisfy the nutritional requirements that
way.

Finally, we can think of dual variables as “marginal costs” – more about that when we talk about
sensitivity analysis.

4 Complementary Slackness

If x and y are optimal solutions to the primal and dual problem respectively, then in our proof of weak
duality, we know that all inequalities have to hold at equality. This means that we know the following:

cjxj =

n∑
j=1

aijyixj ⇔ (

m∑
i=1

aijyi − cj)xj = 0

yi

n∑
j=1

aijxj = yibi ⇔ (

n∑
j=1

aijxj − bi)yi = 0

So, we need, that if xj 6= 0, then
∑m

i=1 aijyi = cj , and similarly, if yi 6= 0 then
∑n

j=1 aijxj = bi.
We thus have the following theorem:

Theorem 5. Suppose the primal and dual LP are both feasible. Let x be a solution for the primal LP, y a
solution for the dual LP. Then x is optimal for the primal and y is optimal for the dual, if and only if

• x is feasible for the primal LP,

• y is feasible for the dual LP,

• x and y satisfy complementary slackness:

– If xj 6= 0, then the j-th constraint of the dual holds at equality, and

– if yi 6= 0, then the i-th constraint of the primal holds at equality.

Now, suppose we have a primal problem in standard form. Then the constraints of the primal are all
equality constraints, so the second type of complementary slackness conditions hold for any pair of feasible
solutions x and y. The first type of complementary slackness conditions require that, if xj > 0 then the i-th
dual constraint holds at equality, i.e., cj −

∑m
i=1 aijyi = 0. In other words, if xj > 0 then cj − yTAj = 0.
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Now, suppose x is a basic feasible solution, and let B be the indices of the basic variables. Let yT = cTBB
−1

as in the proof of the Strong Duality theorem. Then complementary slackness requires that if xj > 0 then
cj−cTBB

−1Aj = 0, i.e., the reduced cost of j must be zero if xj is basic. But this is exactly what the Simplex
Method does! Note that y is not feasible until the final iteration, when cT − yTA = cT − cTBB

−1Aj ≥ 0.
We can thus conclude the following:

The Simplex Method maintains a solution x for the primal LP and y for the dual LP that satisfy
complementary slackness. The solution x is feasible for the primal in all iterations, and the
Simplex Method works toward making the solution y dual feasible.

The Simplex Method is therefore called a primal algorithm – it always maintains a primal feasibility and
works toward dual feasibility. We can also develop an algorithm which maintains two solutions x and y that
satisfy complementary slackness and which maintains dual feasibility and works toward primal feasibility –
such an algorithm is called a dual algorithm, and we will see the Dual Simplex Method next week. Finally,
we could also have a feasible primal and dual solution and work toward achieving complementary slackness.
This is what happens in interior point methods, which you will see later in the course.
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