
Topological Methods in Discrete Geometry

Summary of Lecture 1 MPI, Summer 2011

Radon’s theorem states that any set P of (d + 2) points in Rd can be partitioned into two
sets, say P1 and P2, such that conv (P1) ∩ conv (P2) 6= ∅.

This statement can be re-stated as follows: given any affine map f : ∂∆d+1 → Rd, there exist
two points x1, x2 ∈ ∂∆d+1 with disjoint supports (i.e., the simplices that contain x1 and x2

are disjoint) and where f(x1) = f(x2).

The above two statements are equivalent: the image, under f , of each simplex is the convex-
hull of the vertices of the simplex. So two intersecting convex-hulls on disjoint points corre-
sponds to two disjoint simplices whose image intersects.

Topological Radon’s theorem removes the “affine” constraint for the mapping: given any
map f : ∂∆d+1 → Rd, there exist two points x1, x2 ∈ ∂∆d+1 with disjoint supports (i.e.,
the simplices that contain x1 and x2 are disjoint) and where f(x1) = f(x2). So a strict
generalization of Radon’s theorem.

Proof technique: Lets say, for contradiction, that there is a ‘bad’ map, i.e., a continuous
map f with the property that for every two points x1, x2 with disjoint supports, f(x1) 6=
f(x2). Then if such a map f exists, simply extend it to get the product map fpair : X → Y ,
where

X = (∂∆d+1 × ∂∆d+1) \ {(x1, x2) | supp(x1) ∩ supp(x2) = ∅}
Y = (Rd × Rd) \ {(y1, y2) | y1 = y2}

and fpair(x1, x2)→ (f(x1), f(x2)).

Now simply have to show that fpair does not exist. It is easier to prove the more general
problem that no map from the space X to the space Y exists. Unfortunately, that is not
true for a general such map; so we have not sufficiently modelled the problem, as fpair is a
map of a very specific type from X to Y . In particular, fpair applies the same function f to
both the first and second coordinate given to it. How to capture that property at a general
level?

A weak way to capture it, which fortunately is sufficient in this particular case, is by endowing
both X and Y with antipodality structure in such a way that a general function from X
to Y will not be ‘antipodality preserving’, while fpair will be. And then try to prove the
(weaker) statement that there is no antipodality-preserving map from X to Y (w.r.t. the
antipodality structure we have given X and Y ).

We can equip a space X with antipodality structure by defining a function ν : X → X,
where ν defines a homeomorphism from X to X, and ν2(x) = x. Then the space (X, ν) is
called a Z2-space.

1



In particular, for both X and Y , define the antipodal of the point (a, b) ∈ X (or Y ) to
be the point (b, a) ∈ X (or Y ). Observe that this is a very generic natural way to give
product-spaces an antipodality structure. One can check that this satisfies all the required
properties of antipodality.

Then fpair satisfies antipodality (i.e., antipodal pairs in X map to antipodal pairs in Y ).
This is because fpair((x1, x2)) → (f(x1), f(x2)), and so fpair((x2, x1)) → (f(x2), f(x1)). An
antipodality-preserving map from X to Y , where both X and Y are equipped with antipo-
dality structure, is called a Z2-map.

Now it only remains to show that there is no antipodality-preserving map (i.e., a Z2-map)
from X to Y . That is done by computing an invariant, the Z2-index, over both X and Y . I
will leave the definition of Z2-index, and its properties to be read from the book, where it is
explained nicely.

In particular, it follows from the definition of Z2-index that for a Z2-map to exist from X to
Y , IndZ2(X) ≤ IndZ2(Y ). But straightforward computation shows that for the case d = 1,
IndZ2(X) = 1, while IndZ2(Y ) = 0. And we’ve proven topological Radon’s theorem for the
case d = 1.

X and Y are called ‘Deleted Products’ of ∂∆d+1 and Rd respectively. It is easy to see that
IndZ2(Y ) = d − 1; it is hard (in a technical sense) to compute the Z2-index of X, which is
the reason we only did it for the simple case of d = 1.
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