

Problem Set 4 **Topological Methods in Geometry**

SS 2011

Problem 1 (KKM Lemma in two dimensions).

Let σ be a triangle with vertices v_0, v_1 and v_2 . Let C_0, C_1 and C_2 be closed sets such that for each triple $i, j, k \in \{0, 1, 2\}$, not necessarily distinct, the union of the sets C_i, C_j and C_k contains the simplex spanned by v_i, v_j and v_k . Prove that C_0, C_1 and C_2 have a common intersection.

Problem 2 (Tucker Lemma in two dimensions).

Let T be a triangulation of \mathbb{S}^1 which is centrally symmetric ($\sigma \in T \implies -\sigma \in T$ for any simplex σ). Let $\lambda: V(T) \mapsto \{-1, +1, -2, +2\}$ be a labelling function such that $\lambda(-v) = -\lambda(v)$ for each vertex v in T. Show that if there is no edge $(u, v) \in T$ such that $\lambda(u) = -\lambda(v)$, then the number of edges in T whose vertices have labels -1 and +2 is odd. Use this to prove Tucker's lemma in two dimensions.

Problem 3 (Jordan Curve Theorem for Polygons).

Let P be a simple closed polygon in the plane. Let $K = \mathbb{R}^2 \setminus P$. Prove that there are two points a and b in K which cannot be joined by a polygonal path in K. Prove that any other point in K can be joined to either a or b by a polygonal path in K.

Problem 4 (Hex Theorem).

Let R be an axis parallel box (a rectangle with the interior included) in the plane. Let T be a (geometric) triangulation of R i.e. ||T|| = R. A path in the triangulation is a sequence of vertices v_1, \ldots, v_{k+1} such for any $i \in \{1, \ldots, k\}$, v_i and v_{i+1} span a 1-simplex (an edge) of T. Assume that the vertices of T are colored red and blue. Prove that either there is a red path (a curve on which all vertices are red) joining the left and right sides of the rectangle or there is a blue path joining the top and bottom sides of the rectangle.

Hint: Use Brouwer's Fixed Point theorem.