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Let P be a finite partially ordered set with elements 1,2, • • • , «

and order relation denoted by ">." A chain in P is a set of one or

more elements ii, i2, ■ ■ ■ , ik with ii>Í2> • ■ • >i*. A decomposition

of P is a partition of P into chains; a decomposition with the smallest

number of chains is minimal. Two members i, j of P are unrelated

if neither i>j nor j>i. Dilworth [2, Theorem 1.1 ] has proved that

the number of chains in a minimal decomposition of P is equal to the

maximal number of mutually unrelated elements of P.

Recently Dantzig and Hoffman [l ] have formulated the problem

of finding a minimal decomposition of P as a transportation-type

linear programming problem, and have shown that Dilworth's theo-

rem follows from the duality theorem of linear inequality theory. Our

aim here is to show that Dilworth's theorem can be deduced from the

following theorem of König [4, p. 232]. Let L be a linear graph with

node set N and suppose N is partitioned into fixed subsets Ni, N2.

An A7!, N2 cut C of L is a subset of N having the property that every

arc joining a node of A7! to a node of N2 has some node of C as end

point, and no proper subset of C has this property. An Ni, N2 join

J of L is a set of arcs of L, each of which joins a node of Ni to a node

of N2, and no two of which have a node in common. König's theorem,

applied to the given Ni, N2 partition of L, asserts that max/ | 7|

= minc | C\ (where |S| denotes the number of elements in set S),

the maximum being taken over all N\, N2 joins J, the minimum over

all Ni, N2 cuts C. A proof of this theorem has also been given by

Egerváry [3].

We proceed to a deduction of Dilworth's theorem. Given the par-

tially ordered set P= {l, 2, • • • , «}, let L be the linear graph con-

sisting of 2« nodes, labeled ai, ■ ■ ■ , a„, bi, ■ ■ ■ , bn, and arcs defined

from P by the rule: If i>j, then aj)j is an arc of L; these are all the

arcs of L. Let Ni = {ai, ■ • ■ , an}, A^ = {ii, • • • , bn} ■ Henceforth all

joins and cuts are relative to Ni, N2.

Lemma 1. Corresponding to any join J of L, there is a decomposition

D of P with \j\ +\D\ =«.

Lemma 2. Corresponding to any cut C of L, there is a set U of mutually

unrelated elements of P with \C\ +\U\ =n.

Note that Dilworth's theorem follows from the lemmas and

König's theorem. For let J be a maximal join in L, C a minimal cut,
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and let D, Û be their respective correspondents in P. By König's

theorem, | j| = | C| ; hence, by the lemmas, \î)\ =\Û\. But | U\

^\d\ for any U and D, since two unrelated elements can not belong

to the same chain. Hence maxr/ | U\ =minß ¡D].

Proof of Lemma 1. Let J = {atlo,-2, ai3bit, • ■ • , ctilk-ibi2k}. Thus

il  >  Í2,  is  >   It,   •   •   ■   , Í2k-1  >   Í2k

in P, and we may put these together to form chains in the obvious

way. These chains will be disjunct, since J is a join in L. By adding

to these, as one-element chains, all indices from 1,2, • • -, « which

do not already occur, a decomposition D of P is obtained. If the

length of the ith chain in D is /,-, then

»- L'.-= Eft- i)+ \d\= \j\+ \d\.
i=l i=l

Proof of Lemma 2. Let C= {a{l, ■ ■ ■ , aik, b¡v • • • , bjm}. The

elements of the set / of indices ii, • • • , 4,/i, • • • ,jm are all distinct,

for suppose ii—ji, say. Since C is a cut, there is an arGC with aTb¡í

an arc of L; similarly there is a bs(£C with aifi, an arc of L. Then, by

the transitivity of the ordering and the assumption that ii—ji, it

follows that arbs is an arc of L. This contradicts the fact that C is a

cut, and thus implies that the elements of I are all distinct. Now let

U be the complement of the set I in 1, 2, • • ■ , ». Since C is a cut,

the elements of U are mutually unrelated in P, and » = | U\ +1 C|.

It is true, conversely, that Dilworth's theorem implies König's

theorem, as can be seen from Theorem 3.1 of [2] concerning set

representatives. To prove this directly, make the linear graph L

with node partition Ni= {ai, • ■ ■ , am}, N2={bi, • ■ • , bn} into a

partially ordered set P by defining a¿>Z»y if a,-iy is an arc of L.

The desired implication now follows from the following two easily

checked statements: (1) corresponding to any decomposition D oí P,

there is a join J oí L with \D\ +\j\ =m+n (namely, let J be the

2-element chains of D) ; (2) corresponding to any set of unrelated ele-

ments U of P, there is a cut C of L with | U\ +1 C\ ^m+n, for the

complement of U clearly contains a cut.
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