NOTE ON DILWORTH’S DECOMPOSITION THEOREM
FOR PARTIALLY ORDERED SETS

D. R. FULKERSON

Let P be a finite partially ordered set with elements 1, 2, - - -, n
and order relation denoted by “>.” A chain in P is a set of one or
more elements 4, %2, * + +, & With 41>4,> - - - >4 A decomposition
of P is a partition of P into chains; a decomposition with the smallest
number of chains is minimal. Two members ¢, j of P are unrelated
if neither 4>j nor j>14. Dilworth [2, Theorem 1.1] has proved that
the number of chains in a minimal decomposition of P is equal to the
maximal number of mutually unrelated elements of P.

Recently Dantzig and Hoffman [1] have formulated the problem
of finding a minimal decomposition of P as a transportation-type
linear programming problem, and have shown that Dilworth’s theo-
rem follows from the duality theorem of linear inequality theory. Our
aim here is to show that Dilworth’s theorem can be deduced from the
following theorem of Konig [4, p. 232]. Let L be a linear graph with
node set N and suppose N is partitioned into fixed subsets N, N,.
An Ny, N; cut C of L is a subset of N having the property that every
arc joining a node of N; to a node of N; has some node of C as end
point, and no proper subset of C has this property. An N, N, join
J of L is a set of arcs of L, each of which joins a node of N; to a node
of N,, and no two of which have a node in common. Kénig’s theorem,
applied to the given N,, N, partition of L, asserts that max, IJ I
=min¢ | C| (where | S| denotes the number of elements in set ),
the maximum being taken over all N, N, joins J, the minimum over
all Ny, N; cuts C. A proof of this theorem has also been given by
Egervary [3].

We proceed to a deduction of Dilworth’s theorem. Given the par-
tially ordered set P = {1, 2, -, n}, let L be the linear graph con-
sisting of 2n nodes, labeled @y, - + -, @n, by, - -+, ba, and arcs defined
from P by the rule: If £>j, then a:b; is an arc of L; these are all the
arcsof L. Let Ny={ai, - - -, @}, Na={by, - - -, b,}. Henceforth all
joins and cuts are relative to N, N.

LeEMMA 1. Corresponding to any join J of L, there is a decomposition
D of P with | J| +|D| =n.

LEMMA 2. Corresponding to any cut C of L, there is a set U of mutually
unrelated elements of P with | C| +| U| =n.

Note that Dilworth’sﬁtheorem follows from the lemmas and
Konig’s theorem. For let J be a maximal join in L, C a minimal cut,
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and let D, U be their respective correspondents in P. By Kénig's
theorem, | J| =|C|; hence, by the lemmas, |D|=|0|. But | U|
=< |D] for any U and D, since two unrelated elements can not belong
to the same chain. Hence maxy | U| =minp | D|.

PrOOF OF LEMMA 1. Let J={aibi, aibiy - - -, Gipp_bir,}. Thus

01> gy, 43 > G4, c v, o1 D> Dok

in P, and we may put these together to form chains in the obvious
way. These chains will be disjunct, since J is a join in L. By adding
to these, as one-element chains, all indices from 1, 2, - - -, # which
do not already occur, a decomposition D of P is obtained. If the
length of the sth chain in D is I;, then

D] |D|

n=2L=30:—-1)+|D|=|J|+|D
i=1 =1

ProoF oF LEMMA 2. Let C={a;, - - -, ai, bj, - -+, bj,}. The
elements of the set I of indices 4;, - - -, 4, 1, - -+ - ,;, are all distinct,
for suppose 4, =7, say. Since C is a cut, there is an a,&C with a,b;,
an arc of L; similarly there is a b,& C with a;,b, an arc of L. Then, by
the transitivity of the ordering and the assumption that 4, =7, it
follows that a,b, is an arc of L. This contradicts the fact that Cis a
cut, and thus implies that the elements of I are all distinct. Now let
U be the complement of the set I in 1, 2, - - -, n. Since C is a cut,
the elements of U are mutually unrelated in P, and #n=| U| +| C|.

It is true, conversely, that Dilworth’s theorem implies Kénig's
theorem, as can be seen from Theorem 3.1 of [2] concerning set
representatives. To prove this directly, make the linear graph L
with node partition N;= {al, <., a,,,}, N2={b1, e e, b,,} into a
partially ordered set P by defining a;>b; if a;b; is an arc of L.

The desired implication now follows from the following two easily
checked statements: (1) corresponding to any decomposition D of P,
there is a join J of L with | D| +[J| =m—+n (namely, let J be the
2-element chains of D); (2) corresponding to any set of unrelated ele-
ments U of P, there is a cut C of L with | U| 4| C| Sm+n, for the
complement of U clearly contains a cut.
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