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Rules: The first problem serves as a preparation for the test conducted in the exercise class. You
should solve it, but you do not need to hand it in. The test yields 8 points. The remaining problems
have to be handed innicely written up as you would do in a thesis, as the Diestel does, ... in the
Thursday lecture. These homework problems yield 8 points intotal.

You need to collect at least 50% of all these points (tests andwritten homework) from (i) the first
three exercise sessions, (ii) the first six sessions, and (iii) the whole term.

Occasionally, there might be bonus problems, which yield additional bonus points. They are, typi-
cally, more difficult or not that closely related to that week’s content of the lecture.

This is the last exercise sheet of the course, and therefore the last opportunity to
collect points.

Exercise 1(oral homework, in total 8 points via test)

(Re-)read and understand the material in Sections 11.1, 11.2, and 11.4 in the Diestel book.

Exercise 2(written homework, 2 points)

Let the random variableX denote the number of copies ofK4 in a random graphGn,p.

Compute the expectation and the variance ofX , and use the methods of first and second moment to
derive a threshold result similarly to the one we derived forK3 in the lecture.



Exercise 3(written homework, 3 points)

Let G = (V,E) be a connected graph with|V |= n ≥ 3 and|E|= m. In this exercise you will use the
probabilistic method to show thatG contains an independent set of size at leastn2

4m .

Setd := 2m/n. Note thatd is exactly the average degree inG, and thatd > 1 becauseG is connected
with more than two vertices. LetS ⊆ V be a random subset of vertices obtained by including each
vertex with probability 1/d independently. Let the random variableX denote the size ofS, and let the
random variableY denote the number of edges with both endpoints inS.

a) Show that for any outcome of the probabilistic experimentdescribed,G contains an independent
set of size at leastX −Y . [1P.]

b) Calculate the expectation ofZ := X −Y as a function ofn andd. [1P.]

c) Infer thatG contains an independent set of size at leastn
2d = n2

4m . [1P.]

Exercise 4(written homework, 3 points)

Let the random variableY denote the number of isolated vertices in a random graphGn,p.

a) Compute theexpectation of Y , and apply the first moment method to infer that for anyε > 0
and anyp = p(n) ≥ (1+ ε) ln(n)

n , the random graphGn,p does not contain any isolated vertices
a.a.s. [1.5P.]

b) Compute thevariance of Y , and apply the second moment method to infer that for anyε > 0
and anyp = p(n)≤ (1−ε) ln(n)

n , the random graphGn,p contains an isolated vertex a.a.s. [1.5P.]

(Hint: Recall that 1−x ≤ e−x for all x ∈R. This is a good estimate for small values ofx; in particular,
we have 1− x ≥ e−x−x2

for 0≤ x < 1/2.)

Remark: Note that this is a stronger threshold behaviour than what wesaw in the lecture for the
triangle example (where we proved asymptotic probabilities of 0 or 1 under the assumption that
p = p(n) was larger or smaller than 1/n in order of magnitude). One says thatp0(n) =

ln(n)
n is asharp

threshold for the property of not containing an isolated vertex.

Bonus exercise on next page!



Exercise Bonus 1(4 points)

Consider the following number guessing game. One player, called Carole for simplicity, thinks of a
number between 1 andn. The other player, called Paul, tries to find this number by asking arbitrary
yes/no questions, which Carole truthfully answers. It is clear that Paul, if he is clever, needs at most
⌈log2(n)⌉ questions until he knows the secret number.

Note that, crucially for the following, the minimum number of questions Paul needs to determine
Carole’s number with certainty does not change if we allow Carole to play a ‘devil’s strategy’, that
is, if we allow her to change her number to some other number which is consistent with her previous
answers at any time. We will therefore give Carole this freedom throughout the following.

a) Use the probabilistic method to prove that the⌈log2(n)⌉ bound is tight. Assume that Paul asks
exactlyq questions according to an arbitrary fixed strategy, and thatCarole answers these ques-
tions randomly, i.e., regardless of Paul’s questions she answers ‘yes’ or ‘no’ with probability
1/2 each time, independently of previous questions and answers.

(i) Prove that if the number of questions satisfiesq < log2(n), with positive probability there
is more than one number that is not ruled out by Carole’s answers. (Hint: Compute the
expected number of remaining possible numbers afterq questions.)

(ii) Infer from (i) that Paul has no deterministic strategy to determine Carole’s number with
fewer than log2(n) questions. [2P.]

b) Now, let us slightly change the rules of the game and assumethat Carole is allowed to lie
exactly once. Consequently, a number become impossible onlyafter two answers say that
it is not among the valid numbers. Clearly, Paul can determinethe number with 2⌈log2(n)⌉
questions using his previous strategy, but asking every question twice. However, one can show
that he can do much better and then needs only about log2(n)+ log2(log2(n)) questions.

Adapt the probabilistic argument from (a) to show that he cannot do better than this: Show
that Paul has no deterministic strategy to determine Carole’s number with fewer than log2(n)+
log2(log2(n)) questions. [2P.]


