
Universität

des

Saarlandes

FR 6.2 Informatik

Prof. Dr. Benjamin Doerr, Dr. Danny Hermelin, Dr. Reto

Spöhel

Summer 2011

Solution for Exercise 1

Exercise 1+2 (oral homework, total 8 points via test)

a) If U is independent in G, there are no edges between vertices in U . The graph G contains
an edge exactly if it does not exist in G.

Hence there is an edge between any two vertices of U in G.

b) False. A graph can have up to
(

n

2

)

edges. That is larger than n for n ≥ 4, for example in
complete graphs.

c) Statement ∃v, u ∈ V : {v, u} 6∈ E ∧ (∀w ∈ V \{u} : {v, w} ∈ E);
negation ∀v, u ∈ V : {v, u} ∈ E ∨ (∃w ∈ V \ {u} : {v, w} 6∈ E) .

d) The following graphs are non-isomorphic.

e) Assume that all vertices of G have different degrees. Then necessarily all |V | degrees
between 0 and |V | − 1 are present in the graph. This leads to a contradiction, as the
existence of a v ∈ V with deg(v) = |V | − 1 excludes the existence of isolated vertices,
since v must be connected to all other vertices in V .

f) For n = 2k, k ∈ N, we construct a graph G as follows.

G = ({v1, . . . , vk, w1, . . . , wk}, {viwj|i 6 j, vi 6= wj} ∪ {vivj | i 6= j})

Then we have deg(wi) = i and deg(vi) = 2k − i. Therefore, only vk and wk have the
same degree in our construction. For n = 2k + 1 we use the same construction but add
an isolated vertex.

g) Note: graph as defined in the exercise is commonly called a d-dimensional hypercube. It
has 2d vertices, each vertex has d neighbours, as there are d possible positions in which a
node can differ from another node in exactly one bit. Since

|E| =
1

2

∑

v∈V

deg(v),

in all graphs, we have in particular

|E| =
1

2

∑

v∈V

d =
1

2
2d · d = 2d−1 · d.

Exercise 3 (written homework, 4 points)

Let G = (V,E) be a finite directed graph without isolated vertices.

For a node v ∈ V , let indeg(v) be |{(w, v)|(w, v) ∈ E}| and let outdeg(v) be |{(v, w)|(v, w) ∈
E}|.

Claim: G has an Eulerian tour if and only if it is connected and for every vertex v we have
indeg(v) = outdeg(v).

Proof: First we show that if G is Eulerian we have indeg(v) = outdeg(v) for all v ∈ V and
G is connected. Let T = v1, e1, v2, . . . , vk, ek, v1 be an Eulerian tour of G.

Since there are no isolated vertices, each vertex is contained in the Eulerian tour. Consequently,
there is a walk between any two vertices. Hence the graph is connected. Let w 6= v1 be a vertex
in G. All occurences of w in T have the form (x, w), w, (w, y) and therefore each occurence
contributes one to both indeg(w) as well as outdeg(w). As all incident edges to w appear in
the tour, indeg(w) = outdeg(w). The same is true for occurences of v1, except of course for
the first occurence that only contributes one outgoing edge and the last occurence that only
contributes one incoming edge. Therefore indeg(v1) = outdeg(v1).

Now we show that a longest edge-simple walk in a directed connected graph G without isolated
vertices and indeg(v) = outdeg(v) for all v ∈ V must necessarily be an Eulerian tour. Let
W = v1, e1, v2, . . . , vk, ek, vk+1 be a longest edge-simple walk in G. We show that W is closed.
Assume for the sake of contradiction that v1 6= vk+1. Then ek is an incoming edge to vk+1 that
is not matched by an outgoing edge. As indeg(vk+1) = outdeg(vk+1), there must be another
edge ê = (vk+1, u). Then Ŵ = v1, e1, v2, . . . , vk, ek, vk+1, ê, u is a longer walk than W .

Suppose W is not a Eulerian tour and thus there is an edge that is not contained in W . As G
is connected, there must either be an edge e′ = (vi, w), e

′ 6∈ E(W), that is incident to a vertex
vi on the tour and points away from the tour, or there is an edge e′′ = (u, vi), e

′′ 6∈ E(W), that

points towards the tour. Note that if G contains loops, it might happen that u = vi = w and
hence e′ = e′′.

In both cases W is not a longest walk, as we can construct a longer one using either e′ or e′′.
Either we extend W at the end using e′ to get the walk

W ′ = vi, ei, . . . , vi−1, ei−1, vi, e
′, w,

or we extend W at the beginning by starting from u along the edge e′′ to construct

W ′′ = u, e′′, vi, ei, vi+1, . . . , ek, v1

This contradicts the maximality of W .

Exercise 4 (written homework, 4 points)

We start by giving an example for sequences of length 3. In this case ”0001011100” is a minimal
length string that contains all such sequences.

0 0 0 1 0 1 1 1 0 0
0 0 0

0 0 1
0 1 0

1 0 1
0 1 1

1 1 1
1 1 0

1 0 0

Claim: The shortest bitstring that contains all bitstrings of length k has length 2k + k − 1.

Proof: The length of such a sequence must be minimal: In a sequence of length n, there are
n − (k − 1) possible positions for a length k substring. To have all bitstrings of length k, we
need a string of length 2k + k − 1.

We proceed to show how the existence of these strings. As we are supposed to use exercise
3, we start by constructing a graph in which a Eulerian tour corresponds to a minimal length
bitstring as constructed above for k = 3.

LetGk be a directed graph with V = {(b1, b2, . . . , bk)|bi ∈ {0, 1}} and E = {((b1, b2, . . . , bk), (b2, b3, . . . , bk+1))
{0, 1}}. Let an edge e = (u, v) be labeled with the last bit of v. For k = 2 we get the following
graph:

00 0

01

1

11 1

10

0

1

0

0

1

To use exercise 3 for concluding that Gk is indeed Eulerian for all k, we need to show that
indeg(v) = outdeg(v) for all v ∈ V and thatGk is connected. As for a vertex v = (b1, b2, . . . , bk−1, bk)
there are incoming edges from (0, b1, . . . , bk−1) and (1, b1, . . . , bk−1) and outgoing edges to
(b2, . . . , bk, 0) and (b2, . . . , bk, 1), the restriction on the degrees is satisfied. The graph is also
connected, as for each node v = (b1, . . . , bk) there is a path to (0, 0, . . . , 0). Therefore G is
Eulerian.

Note that |E(Gk)| = 2k+1.

We show how to construct a string as required by the exercise from a Eulerian tour on Gk.

Let v1, e1, v2, . . . e2k+1v1 be a Eulerian tour in Gk. Then v1, e1, e2, . . . , e2k+1 is a string (formed
from the labels) that contains all bitstrings of length k + 1. Because of how we defined the
edges, whenever an edge e = ((a1, . . . , ak), (b1, . . . , bk)) occurs in the sequence, the sequence
contains the bitstring (a1, a2, . . . , ak, bk). As there are 2k+1 edges and no such bitstring occurs
twice, all bitstrings of length k + 1 are contained in the sequence.

