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Solution for Exercise 5

Exercise 1 (oral homework, total 8 points via test)

a) The easy direction in Tutte’s Theorem is that for any S ⊆ V(G) we have |S| ≥ q(G− S),
where q(G− S) is the number of odd sized components in G− S. This direction follows
because given a subset S ⊆ V(G), at least one vertex in each odd sized component of
G− S must be matched to a vertex in S.

b) —

c) Here is one way to do this:

d) This can be shown by assuming for the sake of contradiction that G is not 2-connected.
A case distinction on the possibilities for a cut vertex in G leads to a contradiction to
either the 2-connectedness of H, or to the fact that P is an H-path.

e) Suppose B(G) contains a cycle. As B(G) is bipartite, this cycle must have even length
(Proposition 1.6.1), and so it must contain at least two blocks. Let C = b1a1b2a2 . . . akb1
denote this cycle, where ai is a cut vertex, and bi a block, for all i ∈ {1, . . . , k}. Then we
can easily construct a cycle in G as a1P2a2P3 . . . akP1a1, where Pi is a path in the block bi.
This contradicts the lemma we saw in the lecture (Lemma 3.1.2 in the Diestel) which
states that every cycle in G must be contained in exactly one block.

f) Each edge of a tree is a bridge, hence it is also a block. Thus the blocks of a tree are
precisely its edges.

Exercise 2 (2 points) Let S ⊆ V(G), and take C as an odd sized component of G − S. As G
is (2k + 1)-regular, the sum of the vertex degrees in C is odd, but only an even number is
contributed to the sum by edges contained in C. That is, we have



∑
v∈C

degG(v) = |C| · (2k + 1) = 2|E(C)|+ |{{c, s} : c ∈ C, s ∈ S}|.

From this it follows that |{{c, s}|c ∈ C, s ∈ S}| is odd, and because G is 2k edge connected,
it must be that |{{c, s} : c ∈ C, s ∈ S}| ≥ 2k + 1. Therefore, the number of edges between S
and G− S must be at least (2k + 1) · q(G− S). However, it is also at most (2k + 1)|S| due to
the regularity of G. Thus

(2k + 1) · q(G− S) ≤ (2k + 1)|S|

and so q(G − S) ≤ (2k + 1)|S|. Tutte’s condition therefore applies, and G has a perfect
matching.

Exercise 3 (2 points)

a) Let e = {u, v} be an edge of G, let G′ be the graph that results from subdividing e,
and let x be the new vertex. Suppose there is a cut vertex z in G′. Clearly z 6= x, as
removing x from G′ is equivalent to removing the edge e in G. As G is 2-connected,
we know that λ(G) ≥ κ(G) = 2 (Proposition 1.4.2 in the Diestel), and hence G − e is
connected.

Therefore there must be a vertex y in G′− z that is unreachable from x. But then y must
also be unreachable from at least one of u or v (both, if z 6∈ {u, v}) and therefore z is a
cut vertex for G as well, a contradiction to the assumption that G is 2-connected.

b) Subdividing any edge in a tree increases the number of edges in G and, by exercise 1f),
also the number of blocks in G.

Exercise 4 (4 points)

a) If every pair u, v of vertices lies on a cycle C, there are at least two independent paths
P, Q between u and v along the cycle such that C = P ∪ Q. Removing a vertex x 6∈
{u, v} can only affect at most one of those paths, as P ∩ Q = {u, v}, therefore no cut
vertex exists.

b) Suppose G is two connected, and let e = {u, v} be an edge of G such that u and v do
not lie on a cycle. As we know that λ(G) ≥ κ(G) (Proposition 1.4.2 in the Diestel), we
can easily derive a contradiction. Removing e must disconnect u and v, as otherwise
there would be a path that avoids e, yielding a cycle in G that contains u and v. But
then λ(G) = 1 and G cannot be 2-connected.

c) Let u, v ∈ V(G). The proof is by induction on the distance dG(u, v) of u and v in G.
If dG(u, v) ≤ 1, the claim follows from subproblem (b). For the inductive step, let
dG(u, v) ≥ 2, and let P = u, w, . . . , v be a shortest u − v path in G. By the induction
hypothesis, u and w belong to some cycle of G, and so there are two independent w−v



paths Q1 and Q2 in G. As G is 2-connected, there must be a u−v path R that avoids
w. Let r be a vertex of R that belongs also to either Q1 or Q2, and is closest to u in R
(see figure below). If no such vertex exists, uwQ1v and R are two independent paths
between u and v, and thus uwQ1vRu is a cycle. Otherwise, let r lie w.l.o.g. on Q1. Then
the two paths uRrQ1v and uwQ2v are independent, and form a cycle.


